Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The promise of precision medicine in rheumatology

Abstract

Systemic autoimmune rheumatic diseases (SARDs) exhibit extensive heterogeneity in clinical presentation, disease course, and treatment response. Therefore, precision medicine — whereby treatment is tailored according to the underlying pathogenic mechanisms of an individual patient at a specific time — represents the ‘holy grail’ in SARD clinical care. Current strategies include treat-to-target therapies and autoantibody testing for patient stratification; however, these are far from optimal. Recent innovations in high-throughput ‘omic’ technologies are now enabling comprehensive profiling at multiple levels, helping to identify subgroups of patients who may taper off potentially toxic medications or better respond to current molecular targeted therapies. Such advances may help to optimize outcomes and identify new pathways for treatment, but there are many challenges along the path towards clinical translation. In this Review, we discuss recent efforts to dissect cellular and molecular heterogeneity across multiple SARDs and future directions for implementing stratification approaches for SARD treatment in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular mechanisms and signatures may differ according to disease stages.
Fig. 2: Potential tailored treatment regimens based on recently identified molecular subgroups.

Similar content being viewed by others

References

  1. Rosenblum, M. D., Gratz, I. K., Paw, J. S. & Abbas, A. K. Treating human autoimmunity: current practice and future prospects. Sci. Transl. Med. 4, 125sr1 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pitzalis, C., Choy, E. H. S. & Buch, M. H. Transforming clinical trials in rheumatology: towards patient-centric precision medicine. Nat. Rev. Rheumatol. 16, 590–599 (2020).

    Article  PubMed  Google Scholar 

  3. Kim, N., Eum, H. H. & Lee, H.-O. Clinical perspectives of single-cell RNA sequencing. Biomolecules 11, 1161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manthiram, K., Zhou, Q., Aksentijevich, I. & Kastner, D. L. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat. Immunol. 18, 832–842 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Dalbeth, N. et al. Gout. Nat. Rev. Dis. Prim. 5, 69 (2019).

    Article  PubMed  Google Scholar 

  7. Singh, J. A. et al. 2012 Update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res. 64, 625–639 (2012).

    Article  CAS  Google Scholar 

  8. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheumatol. 63, 3918–3930 (2011).

    Article  CAS  Google Scholar 

  10. Fernando, M. M. A. & Isenberg, D. A. How to monitor SLE in routine clinical practice. Ann. Rheumatol. Dis. 64, 524 (2005).

    Article  CAS  Google Scholar 

  11. Merrill, J. T. et al. Phase 2 trial of iberdomide in systemic lupus erythematosus. N. Engl. J. Med. 386, 1034–1045 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Lakhanpal, A., Smith, M. H. & Donlin, L. T. Rheumatology in the era of precision medicine: synovial tissue molecular patterns and treatment response in rheumatoid arthritis. Curr. Opin. Rheumatol. 33, 58–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. van Baarsen, L. G. M. et al. Synovial tissue heterogeneity in rheumatoid arthritis in relation to disease activity and biomarkers in peripheral blood. Arthritis Rheumatol. 62, 1602–1607 (2010).

    Article  CAS  Google Scholar 

  14. Dennis, G. et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Orange, D. E. et al. Identification of three rheumatoid arthritis disease subtypes by machine learning integration of synovial histologic features and RNA sequencing data. Arthritis Rheumatol. 70, 690–701 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheumatol. Dis. 78, 761 (2019).

    Article  CAS  Google Scholar 

  18. Nerviani, A. et al. A pauci-immune synovial pathotype predicts inadequate response to TNFα-blockade in rheumatoid arthritis patients. Front. Immunol. 11, 845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti–tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheumatol. 54, 2793–2806 (2006).

    Article  CAS  Google Scholar 

  20. Humby, F. et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet 397, 305–317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng, L. et al. New insights from single-cell sequencing data: synovial fibroblasts and synovial macrophages in rheumatoid arthritis. Front. Immunol. 12, 709178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buckley, C. D., Ospelt, C., Gay, S. & Midwood, K. S. Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat. Rev. Rheumatol. 17, 195–212 (2021).

    Article  PubMed  Google Scholar 

  23. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Orange, D. E. et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N. Engl. J. Med. 383, 218–228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ocampo, D. V. & Gladman, D. Psoriatic arthritis. F1000Res. 8, F1000 Faculty Rev-1665 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Diani, M., Altomare, G. & Reali, E. T helper cell subsets in clinical manifestations of psoriasis. J. Immunol. Res. 2016, 1–7 (2016).

    Article  CAS  Google Scholar 

  32. Castillo, R. & Scher, J. U. Not your average joint: towards precision medicine in psoriatic arthritis. Clin. Immunol. 217, 108470 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Ritchlin, C. et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann. Rheumatol. Dis. 73, 990–999 (2014).

    Article  CAS  Google Scholar 

  34. Mease, P. J. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Belasco, J. et al. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheumatol. 67, 934–944 (2015).

  36. Nerviani, A. et al. IL-23 skin and joint profiling in psoriatic arthritis: novel perspectives in understanding clinical responses to IL-23 inhibitors. Ann. Rheumatol. Dis. 80, 591–597 (2021).

    Article  CAS  Google Scholar 

  37. Jadon, D. R., Stober, C., Pennington, S. R. & FitzGerald, O. Applying precision medicine to unmet clinical needs in psoriatic disease. Nat. Rev. Rheumatol. 16, 609–627 (2020).

    Article  PubMed  Google Scholar 

  38. Miyagawa, I. et al. Precision medicine using different biological DMARDs based on characteristic phenotypes of peripheral T helper cells in psoriatic arthritis. Rheumatol. 58, 336–344 (2018).

    Article  CAS  Google Scholar 

  39. Rönnblom, L. & Leonard, D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci. Med. 6, e000270 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Furie, R. et al. Anifrolumab, an anti–interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 69, 376–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Furie, R. A. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1) a randomised, controlled, phase 3 trial. Lancet Rheumatol. 1, E208–E219 (2019).

    Article  Google Scholar 

  43. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lyons, P. A. et al. Novel expression signatures identified by transcriptional analysis of separated leucocyte subsets in systemic lupus erythematosus and vasculitis. Ann. Rheumatol. Dis. 69, 1208 (2010).

    Article  CAS  Google Scholar 

  45. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toro-Domínguez, D. et al. Stratification of systemic lupus erythematosus patients into three groups of disease activity progression according to longitudinal gene expression. Arthritis Rheumatol. 70, 2025–2035 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Panousis, N. I. et al. Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity. Ann. Rheumatol. Dis. 78, 1079 (2019).

    Article  CAS  Google Scholar 

  48. Figgett, W. A. et al. Machine learning applied to whole-blood RNA-sequencing data uncovers distinct subsets of patients with systemic lupus erythematosus. Clin. Transl. Immunol. 8, e01093 (2019).

    Article  Google Scholar 

  49. Sandling, J. K. et al. Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing. Ann. Rheumatol. Dis. 80, 109–117 (2021).

    Article  CAS  Google Scholar 

  50. Jeffries, M. et al. Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics 6, 593–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Renauer, P. et al. DNA methylation patterns in naïve CD4+ T cells identify epigenetic susceptibility loci for malar rash and discoid rash in systemic lupus erythematosus. Lupus Sci. Med. 2, e000101 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Coit, P. et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naïve CD4+ T cells. J. Autoimmun. 61, 29–35 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kessel, A. et al. Antibody clustering helps refine lupus prognosis. Semin. Arthritis Rheumatol. 39, 66–70 (2009).

    Article  CAS  Google Scholar 

  54. Artim-Esen, B. et al. Cluster analysis of autoantibodies in 852 patients with systemic lupus erythematosus from a single center. J. Rheumatol. 41, 1304–1310 (2014).

    Article  PubMed  Google Scholar 

  55. Pacheco, Y. et al. Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. J. Transl. Med. 15, 239 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reynolds, J. A. et al. Cytokine profiling in active and quiescent SLE reveals distinct patient subpopulations. Arthritis Res. Ther. 20, 173 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Robinson, G. A. et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. Lancet Rheumatol. 2, e485–e496 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Toro-Domínguez, D. et al. Differential treatments based on drug-induced gene expression signatures and longitudinal systemic lupus erythematosus stratification. Sci. Rep. 9, 15502 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Guthridge, J. M. et al. Adults with systemic lupus exhibit distinct molecular phenotypes in a cross-sectional study. EClinicalMedicine 20, 100291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fava, A. et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-gamma response gradient in lupus nephritis. JCI Insight 5, e138345 (2020).

  64. Fava, A. et al. Urine proteomics and renal single-cell transcriptomics implicate interleukin-16 in lupus nephritis. Arthritis Rheumatol. 74, 829–839 (2021).

  65. Jennette, J. C. et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheumatol. 65, 1–11 (2013).

    Article  CAS  Google Scholar 

  66. Suwanchote, S. et al. Anti-neutrophil cytoplasmic antibodies and their clinical significance. Clin. Rheumatol. 37, 875–884 (2018).

    Article  PubMed  Google Scholar 

  67. McKinney, E. F. et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat. Med. 16, 586–591 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McKinney, E. F., Lee, J. C., Jayne, D. R. W., Lyons, P. A. & Smith, K. G. C. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lyons, P. A. et al. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med. 367, 214–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lyons, P. A. et al. Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status. Nat. Commun. 10, 5120 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Unizony, S. et al. Clinical outcomes of treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis based on ANCA type. Ann. Rheumatol. Dis. 75, 1166 (2016).

    Article  CAS  Google Scholar 

  73. Jones, R. B. et al. Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: a randomised, non-inferiority trial. Ann. Rheumatol. Dis. 78, 399 (2019).

    Article  CAS  Google Scholar 

  74. Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Prim. 1, 15002 (2015).

    Article  PubMed  Google Scholar 

  75. LeRoy, E. C. et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J. Rheumatol. 15, 202–205 (1988).

    CAS  PubMed  Google Scholar 

  76. Johnson, S. R., Feldman, B. M. & Hawker, G. A. Classification criteria for systemic sclerosis subsets. J. Rheumatol. 34, 1855–1863 (2007).

    PubMed  Google Scholar 

  77. Yang, C., Tang, S., Zhu, D., Ding, Y. & Qiao, J. Classical disease-specific autoantibodies in systemic sclerosis: clinical features, gene susceptibility, and disease stratification. Front. Med. 7, 587773 (2020).

    Article  Google Scholar 

  78. Kayser, C. & Fritzler, M. J. Autoantibodies in systemic sclerosis: unanswered questions. Front. Immunol. 6, 167 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Leclair, V. et al. Subsets in systemic sclerosis: one size does not fit all. J. Scleroderma Relat. Disord. 1, 298–306 (2016).

    Article  Google Scholar 

  80. Sobanski, V. et al. Phenotypes determined by cluster analysis and their survival in the prospective european scleroderma trials and research cohort of patients with systemic sclerosis. Arthritis Rheumatol. 71, 1553–1570 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Whitfield, M. L. et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc. Natl Acad. Sci. USA 100, 12319–12324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gardner, H. et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheumatol. 54, 1961–1973 (2006).

    Article  CAS  Google Scholar 

  83. Milano, A. et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE 3, e2696 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pendergrass, S. A. et al. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J. Invest. Dermatol. 132, 1363–1373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hinchcliff, M. et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J. Invest. Dermatol. 133, 1979–1989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Johnson, M. E. et al. Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts. PLoS ONE 10, e0114017 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Taroni, J. N. et al. Molecular characterization of systemic sclerosis esophageal pathology identifies inflammatory and proliferative signatures. Arthritis Res. Ther. 17, 194 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Assassi, S. et al. Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis. Arthritis Rheumatol. 67, 3016–3026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mahoney, J. M. et al. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms. PLoS Comput. Biol. 11, e1004005 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Taroni, J. N. et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med. 9, 27 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chakravarty, E. F. et al. Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res. Ther. 17, 159 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Khanna, D. et al. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol. 72, 125–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Martyanov, V. et al. Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS ONE 12, e0187580 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Chung, L. et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheumatol. 60, 584–591 (2009).

    Article  CAS  Google Scholar 

  95. Franks, J. M. et al. A machine learning classifier for assigning individual patients with systemic sclerosis to intrinsic molecular subsets. Arthritis Rheumatol. 71, 1701–1710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brito-Zerón, P. et al. Sjögren syndrome. Nat. Rev. Dis. Prim. 2, 16047 (2016).

    Article  PubMed  Google Scholar 

  97. Hjelmervik, T. O. R., Petersen, K., Jonassen, I., Jonsson, R. & Bolstad, A. I. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheumatol. 52, 1534–1544 (2005).

    Article  CAS  Google Scholar 

  98. Gottenberg, J.-E. et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc. Natl Acad. Sci. USA 103, 2770–2775 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wildenberg, M. E., Helden-Meeuwsen, C. G., van de Merwe, J. P., Drexhage, H. A. & Versnel, M. A. Systemic increase in type I interferon activity in Sjögren’s syndrome: a putative role for plasmacytoid dendritic cells. Eur. J. Immunol. 38, 2024–2033 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Emamian, E. S. et al. Peripheral blood gene expression profiling in Sjögren’s syndrome. Genes Immun. 10, 285–296 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hall, J. C. et al. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc. Natl Acad. Sci. USA 109, 17609–17614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nezos, A. et al. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. J. Autoimmun. 63, 47–58 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brkic, Z. et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren’s syndrome and association with disease activity and BAFF gene expression. Ann. Rheumatol. Dis. 72, 728 (2013).

    Article  CAS  Google Scholar 

  104. Bodewes, I. L. A. et al. Systemic interferon type I and type II signatures in primary Sjögren’s syndrome reveal differences in biological disease activity. Rheumatol. 57, 921–930 (2018).

    Article  CAS  Google Scholar 

  105. Hall, J. C. et al. Molecular subsetting of interferon pathways in Sjögren’s syndrome. Arthritis Rheumatol. 67, 2437–2446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. James, J. A. et al. Unique Sjögren’s syndrome patient subsets defined by molecular features. Rheumatol. 59, 860–868 (2019).

    Article  CAS  Google Scholar 

  107. Soret, P. et al. A new molecular classification to drive precision treatment strategies in primary Sjögren’s syndrome. Nat. Commun. 12, 3523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Isenberg, D. A. et al. An assessment of disease flare in patients with systemic lupus erythematosus: a comparison of BILAG 2004 and the flare version of SELENA. Ann. Rheumatol. Dis. 70, 54–59 (2011).

    Article  CAS  Google Scholar 

  109. Yazar, S. et al. Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. Science 376, eabf3041 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barturen, G. et al. Integrative analysis reveals a molecular stratification of systemic autoimmune diseases. Arthritis Rheumatol. 73, 1073–1085 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Merrill, J. T. et al. The biomarkers of lupus disease study: a bold approach may mitigate interference of background immunosuppressants in clinical trials. Arthritis Rheumatol. 69, 1257–1266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Catalina, M. D. et al. Patient ancestry significantly contributes to molecular heterogeneity of systemic lupus erythematosus. JCI Insight 5, e140380 (2020).

    Article  PubMed Central  Google Scholar 

  114. Lewis, M. J. & Jawad, A. S. The effect of ethnicity and genetic ancestry on the epidemiology, clinical features and outcome of systemic lupus erythematosus. Rheumatol. 56, i67–i77 (2017).

    CAS  Google Scholar 

  115. Ngo, S. T., Steyn, F. J. & McCombe, P. A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 35, 347–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Andreoletti, G. et al. Transcriptomic analysis of immune cells in a multi-ethnic cohort of systemic lupus erythematosus patients identifies ethnicity- and disease-specific expression signatures. Commun. Biol. 4, 488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bonventre, J. V. Kidney organoids-a new tool for kidney therapeutic development. Kidney Int. 94, 1040–1042 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Barturen, G., Beretta, L., Cervera, R., Vollenhoven, R. V. & Alarcón-Riquelme, M. E. Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 14, 75–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Kroef, M. et al. Cytometry by time of flight identifies distinct signatures in patients with systemic sclerosis, systemic lupus erythematosus and Sjögrens syndrome. Eur. J. Immunol. 50, 119–129 (2020).

    Article  PubMed  CAS  Google Scholar 

  121. Martin-Gutierrez, L. et al. Stratification of patients with Sjögren’s syndrome and patients with systemic lupus erythematosus according to two shared immune cell signatures, with potential therapeutic implications. Arthritis Rheumatol. 73, 1626–1637 (2021).

    Article  PubMed  Google Scholar 

  122. Slight-Webb, S. et al. Unique serum immune phenotypes stratify Oklahoma Native American rheumatic disease patients. Arthritis Care Res. https://doi.org/10.1002/acr.24795 (2021).

  123. Simon, Q. et al. A proinflammatory cytokine network profile in TH1/type 1 effector B cells delineates a common group of patients in four systemic autoimmune diseases. Arthritis Rheumatol. 73, 1550–1561 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Sirota, M. et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 3, 96ra77 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Slight-Webb for critical review of the manuscript. We would like to thank the scientists in the Accelerating Medicines Partnerships in RA/Lupus and in Autoimmune and Immune Mediated Disease Networks, along with the NIAID Autoimmunity Centers of Excellence Network. This work is supported by NIH grants P30AR073750, U54GM104938, UC2AR081032, UM2AR067678, and UM1AI144292.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Judith A. James.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Janet Pope and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guthridge, J.M., Wagner, C.A. & James, J.A. The promise of precision medicine in rheumatology. Nat Med 28, 1363–1371 (2022). https://doi.org/10.1038/s41591-022-01880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-022-01880-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing