Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial

Abstract

Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial (NCT03374202). AAV8-VRC07 was given at doses of 5 × 1010, 5 × 1011 and 2.5 × 1012 vector genomes per kilogram by intramuscular (IM) injection. Primary endpoints of this study were to assess the safety and tolerability of AAV8-VRC07; to determine the pharmacokinetics and immunogenicity of in vivo VRC07 production; and to describe the immune response directed against AAV8-VRC07 vector and its products. Secondary endpoints were to assess the clinical effects of AAV8-VRC07 on CD4 T cell count and VL and to assess the persistence of VRC07 produced in participants. In this cohort, IM injection of AAV8-VRC07 was safe and well tolerated. No clinically significant change in CD4 T cell count or VL occurred during the 1–3 years of follow-up reported here. In participants who received AAV8-VRC07, concentrations of VRC07 were increased 6 weeks (P = 0.008) and 52 weeks (P = 0.016) after IM injection of the product. All eight individuals produced measurable amounts of serum VRC07, with maximal VRC07 concentrations >1 µg ml−1 in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the AAV8-VRC07 vector cassette.
Fig. 2: VRC 603 CONSORT diagram.
Fig. 3: Concentrations of post-product administration of AAV8-VRC07 plasma DNA.
Fig. 4: Longitudinal serum VRC07 concentration and tier 1 and tier 2 ADA from immediately before IM injection of AAV8-VRC07 to 80–156 weeks after IM injection of 5 × 1010, 5 × 1011 and 2.5 × 1012 vg kg−1.
Fig. 5: Longitudinal neutralization data and the effect of VRC07 paratope binding by 5C9 on neutralization by purified IgG from study participants.

Similar content being viewed by others

Data availability

Data generated in this study, including the study protocol, statistical analysis plan and informed consent form, will be available as de-identified data on ClinicalTrials.gov (NCT03186781) within 1 year from the primary completion date of the study. Individual de-identified participant data that underlie the results reported in this article are available, after de-identification, in the Supplementary Information section immediately after publication with no end date. Requests for additional data or materials will be promptly reviewed by the corresponding author (J.C.) to determine if these are subject to intellectual property, confidentiality or ethical obligations. Any data and materials that can be shared will be released via a material transfer agreement. Personal data underlying this article cannot be shared publicly as they are sensitive. Inquiries regarding data or material availability should be directed to jcasazza@mail.nih.gov.

References

  1. Fuchs, S. P. & Desrosiers, R. C. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Mol. Ther. Methods Clin. Dev. 3, 16068 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Gift, S. K., Leaman, D. P., Zhang, L., Kim, A. S. & Zwick, M. B. Functional stability of HIV-1 envelope trimer affects accessibility to broadly neutralizing antibodies at its apex. J. Virol. 91, e01216–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Torrents de la Pena, A. et al. Improving the immunogenicity of native-like HIV-1 envelope trimers by hyperstabilization. Cell Rep. 20, 1805–1817 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klein, J. S. & Bjorkman, P. J. Few and far between: how HIV may be evading antibody avidity. PLoS Pathog. 6, e1000908 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schiller, J. & Chackerian, B. Why HIV virions have low numbers of envelope spikes: implications for vaccine development. PLoS Pathog. 10, e1004254 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Burton, D. R. & Mascola, J. R. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 16, 571–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pancera, M. et al. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1–V2-directed antibody PG16. Nat. Struct. Mol. Biol. 20, 804–813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hartley, O., Klasse, P. J., Sattentau, Q. J. & Moore, J. P. V3: HIV’s switch-hitter. AIDS Res Hum. Retroviruses 21, 171–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Bonsignori, M. et al. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol. Rev. 275, 145–160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korber, B. et al. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 58, 19–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, J. et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity 45, 1108–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mouquet, H. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl Acad. Sci. USA 109, E3268–3277 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sok, D. et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proc. Natl Acad. Sci. USA 111, 17624–17629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, X. HIV broadly neutralizing antibodies: VRC01 and beyond. Adv. Exp. Med. Biol. 1075, 53–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J. et al. Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science 353, 1045–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mascola, J. R. et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73, 4009–4018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rudicell, R. S. et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J. Virol. 88, 12669–12682 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Saunders, K. O. et al. Sustained delivery of a broadly neutralizing antibody in nonhuman primates confers long-term protection against simian/human immunodeficiency virus infection. J. Virol. 89, 5895–5903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caskey, M. et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522, 487–491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lynch, R. M. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 7, 319ra206 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Mendoza, P. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561, 479–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burton, D. R. & Hangartner, L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu Rev. Immunol. 34, 635–659 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwong, P. D., Mascola, J. R. & Nabel, G. J. Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1. Cold Spring Harb. Perspect. Med. 1, a007278 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Balazs, A. B. et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481, 81–84 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Johnson, P. R. et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. 15, 901–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharon, D. & Kamen, A. Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol. Bioeng. 115, 25–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Daya, S. & Berns, K. I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 21, 583–593 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nowrouzi, A. et al. Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol. Ther. 20, 1177–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Penaud-Budloo, M. et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82, 7875–7885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brady, J. M., Baltimore, D. & Balazs, A. B. Antibody gene transfer with adeno-associated viral vectors as a method for HIV prevention. Immunol. Rev. 275, 324–333 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schnepp, B. C. & Johnson, P. R. Adeno-associated virus delivery of broadly neutralizing antibodies. Curr. Opin. HIV AIDS 9, 250–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J. & Wilson, J. M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381–390 (2009).

    Article  PubMed  Google Scholar 

  37. Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 21, 75–80 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Balazs, A. B. et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat. Med. 20, 296–300 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saunders, K. O. et al. Broadly neutralizing human immunodeficiency virus type 1 antibody gene transfer protects nonhuman primates from mucosal simian-human immunodeficiency virus infection. J. Virol. 89, 8334–8345 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Welles, H. C. et al. Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathog. 14, e1007395 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Martinez-Navio, J. M. et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. Immunity 50, 567–575 e565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Priddy, F. H. et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV 6, e230–e239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Rangarajan, S. et al. AAV5-Factor VIII gene transfer in severe hemophilia A. N. Engl. J. Med. 377, 2519–2530 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Jefferis, R. & Lefranc, M. P. Human immunoglobulin allotypes: possible implications for immunogenicity. MAbs 1, 332–338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ledgerwood, J. E. et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin. Exp. Immunol. 182, 289–301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sarzotti-Kelsoe, M. et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 409, 131–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Nathwani, A. C. et al. Long-term safety and efficacy of Factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lisowski, L., Tay, S. S. & Alexander, I. E. Adeno-associated virus serotypes for gene therapeutics. Curr. Opin. Pharm. 24, 59–67 (2015).

    Article  CAS  Google Scholar 

  51. Fuchs, S. P. et al. AAV-delivered antibody mediates significant protective effects against SIVmac239 challenge in the absence of neutralizing activity. PLoS Pathog. 11, e1005090 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Fuchs, S. P., Martinez-Navio, J. M., Rakasz, E. G., Gao, G. & Desrosiers, R. C. Liver-directed but not muscle-directed AAV-antibody gene transfer limits humoral immune responses in rhesus monkeys. Mol. Ther. Methods Clin. Dev. 16, 94–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Bar, K. J. et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375, 2037–2050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cale, E. M. et al. Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. J. Clin. Invest. 130, 3299–3304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crowell, T. A. et al. Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet HIV 6, e297–e306 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cunningham, C. K. et al. Safety, tolerability, and pharmacokinetics of the broadly neutralizing human immunodeficiency virus (HIV)-1 monoclonal antibody VRC01 in HIV-exposed newborn infants. J. Infect. Dis. 222, 628–636 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Riddler, S. A. et al. Randomized clinical trial to assess the impact of the broadly neutralizing HIV-1 monoclonal antibody VRC01 on HIV-1 persistence in individuals on effective ART. Open Forum Infect. Dis. 5, ofy242 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gaudinski, M. R. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a phase 1 open-label clinical trial in healthy adults. PLoS Med. 15, e1002493 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gaudinski, M. R. et al. Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV 6, e667–e679 (2019).

    Article  PubMed  Google Scholar 

  60. Caskey, M. et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat. Med. 23, 185–191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fang, J. et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat. Biotechnol. 23, 584–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Zhou, T. et al. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 39, 245–258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fang, J. et al. An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol. Ther. 15, 1153–1159 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Schambach, A. et al. Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther. 13, 641–645 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Casazza, J. P. et al. Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J. Infect. Dis. 207, 1829–1840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prabhakaran, M. et al. A sensitive method to quantify HIV-1 antibodies in mucosal samples. J. Immunol. Methods 491, 112995 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Seaman, M. S. et al. Optimization and qualification of a functional anti-drug antibody assay for HIV-1 bnAbs. J. Immunol. Methods 479, 112736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pandey, J. P. et al. Immunoglobulin genes and immunity to HSV1 in Alzheimer’s disease. J. Alzheimers Dis. 70, 917–924 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Schanfield, M. & van Logem, E. in Handbook of Experimental Immunology Vol. 94 (ed. Weir, D.) 1–18 (Blackwell, 1986).

Download references

Acknowledgements

We would like to acknowledge J. Gilly and C. Case of Science Applications International Corporation for their contributions to study product manufacturing as well as P. Johnson and F. Wright of Children’s Hospital of Philadelphia for providing critical AAV expertise. We thank R. Kothera for technical assistance in GM allotyping. We would like to thank our trial volunteers for their contribution and commitment to developing an effective clinical intervention for the prevention and control of HIV. This work was supported by intramural funding from the National Institute of Allergy and Infectious Diseases through the National Institutes of Health Intramural Research Program. A.B.B. is supported by National Institutes for Drug Abuse Avenir New Innovator Award DP2DA040254, the MGH Transformative Scholars Program as well as funding from the Charles H. Hood Foundation. J.P.P. received funding from Leidos Biomedical Research, Inc. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.P.C. had full access to all data in this study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: J.R.M., J.E.L., G.J.N., B.S.G., R.A.K., M.R., G.V.Y., K.O.S., J.G.G., J.P.C., D.B. and A.B.B. Regulatory affairs: A.B.B. and D.B. Clinical oversight: J.E.L., M.R.G., I.G. and A.T.W. Volunteer recruitment, product administration, volunteer safety and sample acquisition: P.A., L.N., A.T.W., L.A.H., S.T. and C.S.H. Acquisition, analysis or interpretation of data: A.B.M., S.N., B.C.L., E.M.C., B.F., J.P.C., A.N.S., S.O., N.A.D.-R., J.P.P., E.E.C., T.L.T. and M.C.N. Administrative, technical, or material support: G.V.Y., R.M.S., O.T., S.H.P., M.C.-C., W.S., X.C. and W.C.A. Drafting of the manuscript: J.P.C. and E.E.C.

Corresponding author

Correspondence to Joseph P. Casazza.

Ethics declarations

Competing interests

A.B. and D.B. are named inventors on patent US9527904B2 held by the California Institute of Technology describing the vector used in this study. J.M. and G.N. are named inventors on patents US 61/568,520, 14/363,740 and 15/612,846 held by the National Institutes of Health describing the ex vivo production of VRC07. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Keith Jerome, Jialu Li, Jean-Pierre Routy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Alison Farrell was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplemental Tables 1–5 and Figs. 1–10.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casazza, J.P., Cale, E.M., Narpala, S. et al. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nat Med 28, 1022–1030 (2022). https://doi.org/10.1038/s41591-022-01762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-022-01762-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research