Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A roadmap to increase diversity in genomic studies

Abstract

Two decades ago, the sequence of the first human genome was published. Since then, advances in genome technologies have resulted in whole-genome sequencing and microarray-based genotyping of millions of human genomes. However, genetic and genomic studies are predominantly based on populations of European ancestry. As a result, the potential benefits of genomic research—including better understanding of disease etiology, early detection and diagnosis, rational drug design and improved clinical care—may elude the many underrepresented populations. Here, we describe factors that have contributed to the imbalance in representation of different populations and, leveraging our experiences in setting up genomic studies in diverse global populations, we propose a roadmap to enhancing inclusion and ensuring equal health benefits of genomics advances. Our Perspective highlights the importance of sincere, concerted global efforts toward genomic equity to ensure the benefits of genomic medicine are accessible to all.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2: Disparities in the representation of continents in genomic studies will grow wider in the next few years without immediate measures to increase diversity.
Fig. 3

References

  1. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    CAS  PubMed  Google Scholar 

  2. Patin, E. et al. Dispersals and genetic adaptation of Bantu-speaking populations in Africa and North America. Science 356, 543–546 (2017).

    CAS  PubMed  Google Scholar 

  3. Auton, A. & Salcedo, T. in Assessing Rare Variation in Complex Traits: Design and Analysis of Genetic Studies (eds Zeggini, E. & Morris, A.) 71–85 (Springer New York, 2015).

  4. Fan, S., Hansen, M. E. B., Lo, Y. & Tishkoff, S. A. Going global by adapting local: a review of recent human adaptation. Science 354, 54–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Majara, L. et al. Low generalizability of polygenic scores in African populations due to genetic and environmental diversity. Preprint at bioRxiv https://doi.org/10.1101/2021.01.12.426453 (2021).

  6. Huang, Q. Q. et al. Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistanis and Bangladeshis. Preprint at https://www.medrxiv.org/content/10.1101/2021.06.22.21259323v1 (2021).

  7. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Asimit, J. L., Hatzikotoulas, K., McCarthy, M., Morris, A. P. & Zeggini, E. Trans-ethnic study design approaches for fine-mapping. Eur. J. Hum. Genet. 24, 1330–1336 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Chikowore, T. et al. Polygenic prediction of type 2 diabetes in continental Africa. Preprint at bioRxiv https://doi.org/10.1101/2021.02.11.430719 (2021).

  10. Inouye, M. et al. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J. Am. Coll. Cardiol. 72, 1883–1893 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Fatumo, S. The opportunity in African genome resource for precision medicine. EBioMedicine 54, 102721 (2020).

    PubMed  PubMed Central  Google Scholar 

  12. Fatumo, S. et al. Discovery and fine-mapping of kidney function loci in first genome-wide association study in Africans. Hum. Mol. Genet. 30, 1559–1568 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Genovese, G. et al. A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int. 78, 698–704 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Rotimi, C. N. et al. The genomic landscape of African populations in health and disease. Hum. Mol. Genet. 26, R225–R236 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165 (2005).

    CAS  PubMed  Google Scholar 

  17. Gao, C. et al. Risk of breast cancer among carriers of pathogenic variants in breast cancer predisposition genes varies by polygenic risk score. J. Clin. Oncol. 39, 2564–2573 (2021).

    CAS  PubMed  Google Scholar 

  18. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    CAS  PubMed  Google Scholar 

  19. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Scutari, M., Mackay, I. & Balding, D. Using genetic distance to infer the accuracy of genomic prediction. PLoS Genet. 12, e1006288 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sengupta, D., Choudhury, A., Basu, A. & Ramsay, M. Population stratification and underrepresentation of indian subcontinent genetic diversity in the 1000 genomes project dataset. Genome Biol. Evol. 8, 3460–3470 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Oh, S. S. et al. Diversity in clinical and biomedical research: a promise yet to be fulfilled. PLoS Med. 12, e1001918 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Bentley, A. R., Callier, S. & Rotimi, C. N. Diversity and inclusion in genomic research: why the uneven progress? J. Community Genet. 8, 255–266 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. H3Africa Consortium et al. Research capacity. Enabling the genomic revolution in Africa. Science 344, 1346–1348 (2014).

  26. Tindana, P. et al. Community engagement strategies for genomic studies in Africa: a review of the literature. BMC Med. Ethics 16, 24 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).

    CAS  PubMed  Google Scholar 

  28. Tan, S.-H., Petrovics, G. & Srivastava, S. Prostate cancer genomics: recent advances and the prevailing underrepresentation from racial and ethnic minorities. Int. J. Mol. Sci. 19, E1255 (2018).

    PubMed  Google Scholar 

  29. Reverby, S. M. Ethical failures and history lessons: the US Public Health Service Research Studies in Tuskegee and Guatemala. Public Health Rev. 34, 1–18 (2012).

    Google Scholar 

  30. Löwy, I. The best possible intentions testing prophylactic approaches on humans in developing countries. Am. J. Public Health 103, 226–237 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Kraft, S. A. et al. Beyond consent: building trusting relationships with diverse populations in precision medicine research. Am. J. Bioeth. 18, 3–20 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Global Forum for Health Research. The 10/90 Report on Health Research 2000 (http://www.globalforumhealth.org/).

  33. McGregor, S., Henderson, K. J. & Kaldor, J. M. How are health research priorities set in low- and middle-income countries? A systematic review of published reports. PLoS ONE 9, e108787 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Sridhar, D. Who sets the global health research agenda? The challenge of multi-bi financing. PLoS Med. 9, e1001312 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Mbaye, R. et al. Who is telling the story? A systematic review of authorship for infectious disease research conducted in Africa, 1980–2016. BMJ Glob. Health 4, e001855 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Stein, C. M. Challenges of genetic data sharing in african studies. Trends Genet. 36, 895–896 (2020).

    CAS  PubMed  Google Scholar 

  37. Wright, G. E. B., Koornhof, P. G. J., Adeyemo, A. A. & Tiffin, N. Ethical and legal implications of whole-genome and whole-exome sequencing in African populations. BMC Med. Ethics 14, 21 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Ascencio-Carbajal, T., Saruwatari-Zavala, G., Navarro-Garcia, F. & Frixione, E. Genetic/genomic testing: defining the parameters for ethical, legal and social implications. BMC Med. Ethics 22, 156 (2021).

    PubMed  PubMed Central  Google Scholar 

  39. Choudhury, A. et al. Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans. Nat. Commun. 8, 2062 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. The Malaria Genomic Epidemiology Network. A global network for investigating the genomic epidemiology of malaria. Nature 456, 732–737 (2008).

  41. Choudhury, A., Sengupta, D., Aron, S. & Ramsay, M. in Africa, the Cradle of Human Diversity (eds Fortes-Lima, C. et al.) 257–304 https://doi.org/10.1163/9789004500228_011 (Brill, 2021).

  42. Gurdasani, D. et al. Uganda Genome Resource enables insights into population history and genomic discovery in africa. Cell 179, 984–1002 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Asiki, G. et al. The general population cohort in rural south-western Uganda: a platform for communicable and non-communicable disease studies. Int. J. Epidemiol. 42, 129–141 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Fatumo, S. et al. Metabolic traits and stroke risk in individuals of African ancestry: Mendelian randomization analysis. Stroke 52, 2680–2684 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Boua, P. R. et al. Novel and known gene–smoking interactions with cIMT identified as potential drivers for atherosclerosis risk in West-African populations of the AWI-Gen Study. Front. Genet. 10, 1354 (2019).

    CAS  PubMed  Google Scholar 

  46. Dlamini, S. N. et al. Associations between CYP17A1 and SERPINA6/A1 polymorphisms, and cardiometabolic risk factors in Black South Africans. Front. Genet. 12, 687335 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gómez-Olivé, F. X. et al. Regional and sex differences in the prevalence and awareness of hypertension: an H3Africa AWI-Gen Study across 6 sites in sub-Saharan Africa. Glob. Heart 12, 81–90 (2017).

    PubMed  Google Scholar 

  48. Nonterah, E. A. et al. Classical cardiovascular risk factors and HIV are associated with carotid intima-media thickness in adults from sub-Saharan Africa: findings from H3Africa AWI-Gen Study. J. Am. Heart Assoc. 8, e011506 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Sengupta, D. et al. Genetic substructure and complex demographic history of South African Bantu speakers. Nat. Commun. 12, 2080 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Aron, S. et al. The development of a sustainable bioinformatics training environment within the H3Africa bioinformatics network (H3ABioNet). Front. Educ. 6, 356 (2021).

    Google Scholar 

  51. Acharya, A., Schrauwen, I. & Leal, S. M. Identification of autosomal recessive nonsyndromic hearing impairment genes through the study of consanguineous and non-consanguineous families: past, present, and future. Hum. Genet. https://doi.org/10.1007/s00439-021-02309-9 (2021).

  52. Harripaul, R. et al. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol. Psychiatry 23, 973–984 (2018).

    CAS  PubMed  Google Scholar 

  53. Khan, N. M. et al. Updates on clinical and genetic heterogeneity of ASPM in 12 autosomal recessive primary microcephaly families in Pakistani population. Front. Pediatr. 9, 695133 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Khan, A. A. et al. p.arg102ser is a common Pde6a mutation causing autosomal recessive retinitis pigmentosa in Pakistani families. J. Pak. Med. Assoc. 71, 816–821 (2021).

    PubMed  Google Scholar 

  55. Manolio, T. A. Using the data we have: improving diversity in genomic research. Am. J. Hum. Genet. 105, 233–236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Knight, H. M. et al. Homozygosity mapping in a family presenting with schizophrenia, epilepsy and hearing impairment. Eur. J. Hum. Genet. 16, 750–758 (2008).

  57. Hampshire, D. J. et al. MORM syndrome (mental retardation, truncal obesity, retinal dystrophy and micropenis), a new autosomal recessive disorder, links to 9q34. Eur. J. Hum. Genet. 14, 543–548 (2006).

    CAS  PubMed  Google Scholar 

  58. Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Elsum, I. et al. Inclusion of indigenous Australians in biobanks: a step to reducing inequity in health care. Med. J. Aust. 211, 7–9 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Kowal, E. & Anderson, I. Genetic research in Aboriginal and Torres Strait Islander communities: continuing the conversation (Lowitja Institute, 2012).

  61. Thomson, R. J. et al. New genetic loci associated with chronic kidney disease in an indigenous australian population. Front. Genet. 10, 330 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gaskell, G. et al. Publics and biobanks: pan-European diversity and the challenge of responsible innovation. Eur. J. Hum. Genet. 21, 14–20 (2013).

    PubMed  Google Scholar 

  63. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Segun Fatumo.

Ethics declarations

Competing interests

A.R.M. has consulted for 23andMe and Illumina, and has received speaker fees from Genentech, Pfizer, and Illumina. All other authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Ambroise Wonkam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Karen O’Leary was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fatumo, S., Chikowore, T., Choudhury, A. et al. A roadmap to increase diversity in genomic studies. Nat Med 28, 243–250 (2022). https://doi.org/10.1038/s41591-021-01672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-021-01672-4

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing