Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

100 years of insulin: celebrating the past, present and future of diabetes therapy

Abstract

The year 2021 marks the centennial of Banting and Best’s landmark description of the discovery of insulin. This discovery and insulin’s rapid clinical deployment effectively transformed type 1 diabetes from a fatal diagnosis into a medically manageable chronic condition. In this Review, we describe key accomplishments leading to and building on this momentous occasion in medical history, including advancements in our understanding of the role of insulin in diabetes pathophysiology, the molecular characterization of insulin and the clinical use of insulin. Achievements are also viewed through the lens of patients impacted by insulin therapy and the evolution of insulin pharmacokinetics and delivery over the past 100 years. Finally, we reflect on the future of insulin therapy and diabetes treatment, as well as challenges to be addressed moving forward, so that the full potential of this transformative discovery may be realized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A timeline of key discoveries in our understanding of insulin and diabetes pathophysiology.
Fig. 2: The evolution of improvements in insulin pharmacokinetics.
Fig. 3: Advances in diabetes management viewed through the lens of individuals with type 1 diabetes.
Fig. 4: The future of insulin and diabetes therapy.

References

  1. 1.

    Bliss, M. The Discovery of Insulin (Univ. Chicago Press, 1982).

    Book  Google Scholar 

  2. 2.

    Nerup, J. et al. Cell-mediated immunity in diabetes mellitus. Proc. R. Soc. Med. 67, 506–513 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gale, E. A. The discovery of type 1 diabetes. Diabetes 50, 217–226 (2001).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Bliss, M. The history of insulin. Diabetes Care 16, 4–7 (1993).

    PubMed  Article  Google Scholar 

  5. 5.

    Bottazzo, G., Florin-Christensen, A. & Doniach, D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 304, 1279–1283 (1974).

    Article  Google Scholar 

  6. 6.

    Singal, D. P. & Blajchman, M. A. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 22, 429–432 (1973).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Nerup, J. et al. HL-A antigens and diabetes mellitus. Lancet 2, 864–866 (1974).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Cudworth, A. G. & Woodrow, J. C. HL-A antigens and diabetes mellitus. Lancet 2, 1153 (1974).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Gemmill, C. L. The Greek concept of diabetes. Bull. N. Y. Acad. Med. 48, 1033–1036 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Allan, F. N. The writings of Thomas Willis, M.D.; diabetes three hundred years ago. Diabetes 2, 74–77 (1953).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Dobson, M. Nature of the urine in diabetes. Med. Obs. Inq. 5, 298–310 (1776).

    Google Scholar 

  12. 12.

    v. Mering, J. & Minkowski, O. Diabetes mellitus nach Pankreasexstirpation. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 26, 371–387 (1890).

    Article  Google Scholar 

  13. 13.

    Sakula, A. Paul Langerhans (1847–1888): a centenary tribute. J. R. Soc. Med. 81, 414–415 (1988).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Laguesse, G. E. Sur la formation des îlots de Langerhans dans le pancréas. C. R. Seances Soc. Biol. Fil. 5, 819–820 (1893).

  15. 15.

    Goet, J. P. Gustave Edouard Laguesse; his demonstration of the significance of the Islands of Langerhans. Diabetes 2, 322–324 (1953).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    De Meyer, J. Action de la sécrétion interne du pancréas sur différents organes et en particulier sur la sécrétion rénale. Arch. Fisiol. 7, 96–99 (1909).

    Google Scholar 

  17. 17.

    Lindsten, J. August Krogh and the Nobel Prize to Banting and Macleod. The Nobel Prize https://www.nobelprize.org/prizes/themes/august-krogh-and-the-nobel-prize-to-banting-and-macleod/ (2 April 2001).

  18. 18.

    Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12, 141 (1922).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lancereaux, E. Le diabète maigre, ses symptômes, son évolution, son pronostic et son traitement. Union Med. 29, 161 (1880).

    Google Scholar 

  20. 20.

    Pincus, G., Joslin, E. & White, P. The age-incidence relations in diabetes mellitus. Am. J. Med. Sci. 188, 116–121 (1934).

    Article  Google Scholar 

  21. 21.

    MacLean, H. Some observations on diabetes and insulin in general practice. Postgrad. Med. J. 1, 73–77 (1926).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Falta, W. & Boller, R. Insulärer und insulinresistenter Diabetes. Klin. Wochenschr. 10, 438–443 (1931).

    CAS  Article  Google Scholar 

  23. 23.

    Himsworth, H. P. Diabetes mellitus: its differentiation into insulin-sensitive and insulin insensitive types. Lancet 227, 127–130 (1936).

    Article  Google Scholar 

  24. 24.

    Bornstein, J. & Lawrence, R. Two types of diabetes mellitus, with and without available plasma insulin. Br. Med. J. 1, 732 (1951).

    PubMed Central  Article  Google Scholar 

  25. 25.

    Wrenshall, G. A., Bogoch, A. & Ritchie, R. Extractable insulin of pancreas: correlation with pathological and clinical findings in diabetic and nondiabetic cases. Diabetes 1, 87–107 (1952).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Yalow, R. S. & Berson, S. A. Immunoassay of endogenous plasma insulin in man. J. Clin. Invest. 39, 1157–1175 (1960).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Himsworth, H. P. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. Int. J. Epidemiol. 42, 1594–1598 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Wild, S. H. & Byrne, C. D. Commentary: sub-types of diabetes–what’s new and what’s not. Int. J. Epidemiol. 42, 1600–1602 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Anderson, J., Goudie, R., Gray, K. & Timbury, G. Auto-antibodies in Addison’s disease. Lancet 269, 1123–1124 (1957).

    Article  Google Scholar 

  30. 30.

    Roitt, I., Doniach, D., Campbell, P. & Hudson, R. V. Auto-antibodies in Hashimoto’s disease (lymphadenoid goitre). Lancet 268, 820–821 (1956).

    Article  Google Scholar 

  31. 31.

    Witebsky, E., Rose, N. R., Terplan, K., Paine, J. R. & Egan, R. W. Chronic thyroiditis and autoimmunization. J. Am. Med. Assoc. 164, 1439–1447 (1957).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Irvine, W., Clarke, B., Scarth, L., Cullen, D. & Duncan, L. Thyroid and gastric autoimmunity in patients with diabetes mellitus. Lancet 296, 163–168 (1970).

    Article  Google Scholar 

  33. 33.

    Ungar, B., Stocks, A., Martin, F., Whittingham, S. & Mackay, I. Intrinsic-factor antibody in diabetes mellitus. Lancet 290, 77–78 (1967).

    Article  Google Scholar 

  34. 34.

    Renold, A. E., Soeldner, S. & Steinke, J. in Ciba Foundation Symposium ‐ Aetiology of Diabetes Mellitus and its Complications (Colloquia on Endocrinology) Vol. 15 (eds. M.P. Cameron, M. P. & O’Connor, M.) 122–139 (Wiley, 1964).

  35. 35.

    Lacy, P. E. & Wright, P. H. Allergic interstitial pancreatitis in rats injected with guinea pig anti-insulin serum. Diabetes 14, 634–642 (1965).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Heydinger, D. K. & Lacy, P. E. Islet cell changes in the rat following injection of homogenized islets. Diabetes 23, 579–582 (1974).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Lecompte, P. M. Insulitis in early juvenile diabetes. AMA Arch. Pathol. 66, 450–457 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gepts, W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14, 619–633 (1965).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237, E214–E223 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Reaven, G. M. Insulin resistance in noninsulin-dependent diabetes mellitus. Does it exist and can it be measured?. Am. J. Med. 74, 3–17 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Shen, S. W., Reaven, G. M. & Farquhar, J. W. Comparison of impedance to insulin-mediated glucose uptake in normal subjects and in subjects with latent diabetes. J. Clin. Invest. 49, 2151–2160 (1970).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28, 1039–1057 (1979).

  43. 43.

    Makino, S., Muraoka, Y., Kishimoto, Y. & Hayashi, Y. Genetic analysis for insulitis in NOD mice. Jikken Dobutsu 34, 425–431 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Nakhooda, A. F., Like, A. A., Chappel, C. I., Wei, C. N. & Marliss, E. B. The spontaneously diabetic Wistar rat (the “BB” rat). Studies prior to and during development of the overt syndrome. Diabetologia 14, 199–207 (1978).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Eisenbarth, G. S. Type I diabetes mellitus. A chronic autoimmune disease. N. Engl. J. Med. 314, 1360–1368 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Gottlieb, M. S. & Root, H. F. Diabetes mellitus in twins. Diabetes 17, 693–704 (1968).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Tattersall, R. B. & Pyke, D. A. Diabetes in identical twins. Lancet 2, 1120–1125 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Thorsby, E. A short history of HLA. Tissue Antigens 74, 101–116 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Davies, J. L. et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Bennett, S. T. et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat. Genet. 9, 284–292 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet. 15, 289–292 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–297 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics. Nucleic Acids Res. 47, D1005–D1012 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Coomans de Brachène, A. et al. IFN-α induces a preferential long-lasting expression of MHC class I in human pancreatic beta cells. Diabetologia 61, 636–640 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  55. 55.

    Marroqui, L. et al. Interferon-α mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia 60, 656–667 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Fløyel, T. et al. CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc. Natl Acad. Sci. USA 111, 10305–10310 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Eizirik, D. L. et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8, e1002552 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Eizirik, D. L., Colli, M. L. & Ortis, F. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5, 219–226 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Lee, H. et al. Beta cell dedifferentiation induced by IRE1α deletion prevents type 1 diabetes. Cell Metab. 31, 822–836 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Bottazzo, G. F. Lawrence lecture. Death of a beta cell: homicide or suicide? Diabet. Med. 3, 119–130 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Battaglia, M. et al. Introducing the endotype concept to address the challenge of disease heterogeneity in type 1 diabetes. Diabetes Care 43, 5–12 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Krischer, J. P. et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58, 980–987 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Ziegler, A. G. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. J. Am. Med. Assoc. 309, 2473–2479 (2013).

    CAS  Article  Google Scholar 

  64. 64.

    Insel, R. A. et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38, 1964–1974 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Feutren, G. et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet 2, 119–124 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Stiller, C. R. et al. Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science 223, 1362–1367 (1984).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Kahn, S. E. et al. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42, 1663–1672 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Bergman, R. N., Phillips, L. S. & Cobelli, C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68, 1456–1467 (1981).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Evans-Molina, C., Hatanaka, M. & Mirmira, R. G. Lost in translation: endoplasmic reticulum stress and the decline of β-cell health in diabetes mellitus. Diabetes Obes. Metab. 15, 159–169 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Butler, A. E. et al. β-cell deficit in obese type 2 diabetes, a minor role of β-cell dedifferentiation and degranulation. J. Clin. Endocrinol. Metab. 101, 523–532 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Guo, S. et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J. Clin. Invest. 123, 3305–3316 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Lillioja, S. et al. Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N. Engl. J. Med. 318, 1217–1225 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Martin, B. C. et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340, 925–929 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Saad, M. F. et al. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet 1, 1356–1359 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Tabak, A. G. et al. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373, 2215–2221 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Trico, D., Natali, A., Arslanian, S., Mari, A. & Ferrannini, E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 3, e124912 (2018).

    PubMed Central  Article  Google Scholar 

  77. 77.

    Duggirala, R. et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am. J. Hum. Genet 64, 1127–1140 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    McCarthy, M. I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 2339–2350 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Udler, M. S. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 15, e1002654 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82.

    Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Dennis, J. M., Shields, B. M., Henley, W. E., Jones, A. G. & Hattersley, A. T. Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol. 7, 442–451 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Crowfoot, D. X-ray single crystal photographs of insulin. Nature 135, 591–592 (1935).

    CAS  Article  Google Scholar 

  85. 85.

    Adams, M. J. et al. Structure of rhombohedral 2 zinc insulin crystals. Nature 224, 491–495 (1969).

    CAS  Article  Google Scholar 

  86. 86.

    Howard, J. A. Dorothy Hodgkin and her contributions to biochemistry. Nat. Rev. Mol. Cell Biol. 4, 891–896 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Sanger, F. & Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 49, 463–481 (1951).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Sanger, F. & Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 49, 481–490 (1951).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Sanger, F. & Thompson, E. The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 53, 353–366 (1953).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Sanger, F. & Thompson, E. The amino-acid sequence in the glycyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 53, 366–374 (1953).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Berg, P. Fred Sanger: a memorial tribute. Proc. Natl Acad. Sci. USA 111, 883–884 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Ryle, A. P., Sanger, F., Smith, L. F. & Kitai, R. The disulphide bonds of insulin. Biochem. J. 60, 541–556 (1955).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Sanger, F. Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes. Science 129, 1340–1344 (1959).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Steiner, D. F. Adventures with insulin in the islets of Langerhans. J. Biol. Chem. 286, 17399–17421 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Steiner, D. F. & Oyer, P. E. The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Natl Acad. Sci. USA 57, 473–480 (1967).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Chance, R. E., Ellis, R. M. & Bromer, W. W. Porcine proinsulin: characterization and amino acid sequence. Science 161, 165–167 (1968).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    De Meyts, P. Insulin and its receptor: structure, function and evolution. Bioessays 26, 1351–1362 (2004).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  98. 98.

    Shoelson, S. et al. Three mutant insulins in man. Nature 302, 540–543 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Garin, I. et al. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc. Natl Acad. Sci. USA 107, 3105–3110 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Stoy, J. et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl Acad. Sci. USA 104, 15040–15044 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Liu, M. et al. Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes. Diabetes 61, 828–837 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Rege, N. K. et al. Evolution of insulin at the edge of foldability and its medical implications. Proc. Natl Acad. Sci. USA 117, 29618–29628 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Sims, E. K. et al. Elevations in the fasting serum proinsulin-to-C-peptide ratio precede the onset of type 1 diabetes. Diabetes Care 39, 1519–1526 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Loopstra-Masters, R. C., Haffner, S. M., Lorenzo, C., Wagenknecht, L. E. & Hanley, A. J. Proinsulin-to-C-peptide ratio versus proinsulin-to-insulin ratio in the prediction of incident diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetologia 54, 3047–3054 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Ovalle, F. et al. Understanding concentrated insulins: a systematic review of randomized controlled trials. Curr. Med. Res. Opin. 34, 1029–1043 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Hirsch, I. B., Juneja, R., Beals, J. M., Antalis, C. J. & Wright, E. E. The evolution of insulin and how it informs therapy and treatment choices. Endocr. Rev. 41, 733–755 (2020).

    PubMed Central  Article  Google Scholar 

  107. 107.

    Murray, I. & Wilson, R. B. The new insulins—lente, ultralente, and semilente. Br. Med. J. 2, 1023–1026 (1953).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Fraser, L. Cloning insulin. Genentech https://www.gene.com/stories/cloning-insulin (7 April 2016).

  109. 109.

    Lavaux, J. P., Ooms, H. A. & Christiansen, A. H. Insulin antibodies in insulin-treated patients; a clinical trial with highly purified insulins. Int. Congr. Ser. 316, 40–46 (1973).

    Google Scholar 

  110. 110.

    Institute of Medicine. Sources of Medical Technology: Universities and Industry (National Academies Press, 1995).

  111. 111.

    Goeddel, D. V. et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl Acad. Sci. USA 76, 106–110 (1979).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article  Google Scholar 

  113. 113.

    United Kingdom Prospective Diabetes Study (UKPDS). Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).

    Article  Google Scholar 

  114. 114.

    United Kingdom Prospective Diabetes Study (UKPDS). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  115. 115.

    United Kingdom Prospective Diabetes Study (UKPDS). 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. Br. Med. J. 310, 83–88 (1995).

  116. 116.

    Biester, T., Kordonouri, O. & Danne, T. Pharmacological properties of faster-acting insulin aspart. Curr. Diabetes Rep. 17, 101 (2017).

    Article  CAS  Google Scholar 

  117. 117.

    Pieber, T. R., Eugene-Jolchine, I. & Derobert, E. Efficacy and safety of HOE 901 versus NPH insulin in patients with type 1 diabetes. The European Study Group of HOE 901 in type 1 diabetes. Diabetes Care 23, 157–162 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    US Food and Drug Administration. Levemir insulin detemir[rDNA origin] injection drug approval package. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021-536_LevemirTOC.cfm (2005).

  119. 119.

    Kurtzhals, P. et al. Multi-hexamer formation is the underlying basis for the ultra-long glucose-lowering effect of insulin degludec. Diabetologia 54, S426 (2011).

  120. 120.

    Kesavadev, J., Saboo, B., Krishna, M. B. & Krishnan, G. Evolution of insulin delivery devices: from syringes, pens, and pumps to DIY artificial pancreas. Diabetes Ther. 11, 1251–1269 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Oleck, J., Kassam, S. & Goldman, J. D. Commentary: why was inhaled insulin a failure in the market? Diabetes Spectr. 29, 180–184 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Kovatchev, B. A century of diabetes technology: signals, models, and artificial pancreas control. Trends Endocrinol. Metab. 30, 432–444 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Kadish, A. H. Automation control of blood sugar. I. A servomechanism for glucose monitoring and control. Am. J. Med. Electron. 3, 82–86 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Albisser, A. M. et al. An artificial endocrine pancreas. Diabetes 23, 389–396 (1974).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Kesavadev, J., Srinivasan, S., Saboo, B., Krishna, B. M. & Krishnan, G. The do-it-yourself artificial pancreas: a comprehensive review. Diabetes Ther. 11, 1217–1235 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Sims, E. K. et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci. Transl. Med. 13, eabc8980 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Ferrat, L. A. et al. A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nat. Med. 26, 1247–1255 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Ziegler, A. G. et al. Yield of a public health screening of children for islet autoantibodies in Bavaria, Germany. J. Am. Med. Assoc. 323, 339–351 (2020).

    CAS  Article  Google Scholar 

  130. 130.

    Deacon, C. F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 642–653 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Rieg, T. & Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61, 2079–2086 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Russell, S. J. et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 371, 313–325 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. 134.

    Haidar, A. et al. Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial. Lancet Diabetes Endocrinol. 3, 17–26 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  136. 136.

    Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Evans-Molina, C., Vestermark, G. L. & Mirmira, R. G. Development of insulin-producing cells from primitive biologic precursors. Curr. Opin. Organ Transplant. 14, 56–63 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Agulnick, A. D. et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl. Med. 4, 1214–1222 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Simeone, J. C. et al. Healthcare resource utilization and cost among patients with type 1 diabetes in the United States. J. Manag. Care Spec. Pharm. 26, 1399–1410 (2020).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Beran, D., Lazo-Porras, M., Mba, C. M. & Mbanya, J. C. A global perspective on the issue of access to insulin. Diabetologia 64, 954–962 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Cefalu, W. T. et al. Insulin Access and Affordability Working Group: conclusions and recommendations. Diabetes Care 41, 1299–1311 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Sharpey-Schäfer, E. A. An Introduction to the Study of the Endocrine Glands and Internal Secretions: Lane Medical Lectures, 1913 (Stanford Univ. Press, 1914).

  145. 145.

    Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Goldfine, A. B. et al. Insulin resistance is a poor predictor of type 2 diabetes in individuals with no family history of disease. Proc. Natl Acad. Sci. USA 100, 2724–2729 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Utzschneider, K. M. et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32, 335–341 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Diabetes Prevention Trial–Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

    Article  Google Scholar 

  149. 149.

    Morgan, N. G. & Richardson, S. J. Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. Diabetologia 61, 2499–2506 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Campbell-Thompson, M. et al. Network for pancreatic organ donors with diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab. Res. Rev. 28, 608–617 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Al-Tabakha, M. M. Future prospect of insulin inhalation for diabetic patients: the case of Afrezza versus Exubera. J. Control. Release 215, 25–38 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Katzung, B. G. M., Susan B. & Trevor, A. J. Basic & Clinical Pharmacology 12th edn (McGraw Hill, 2012).

  153. 153.

    Tibaldi, J. M. Evolution of insulin: from human to analog. Am. J. Med. 127, S25–S38 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154.

    Polonsky, K. S. The past 200 years in diabetes. N. Engl. J. Med. 367, 1332–1340 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Gill, G., Jones, K., Smyth, C., Bain, S. & Barnett, A. Memories of the early years of insulin treatment in the UK. Pract. Diabetes Int. 20, 103–107.

  156. 156.

    Padmore, E. Reflections on six decades of living with insulin-treated diabetes. J. Diabetes Nurs. 10, 366–370 (2009).

    Google Scholar 

  157. 157.

    Clothier, C. Living with diabetes in the 1950s. J. Diabetes Nurs. 23, 1–8 (2019).

    Google Scholar 

Download references

Acknowledgements

Research in the laboratory of C.E.-M. is supported by the NIH grants R01 DK093954, R21 DK119800, U01DK127786, R01DK127308 and P30DK097512; the VA Merit Award I01BX001733; and the JDRF grant 2-SRA-2019-834-S-B; as well as gifts from the Sigma Beta Sorority, the Ball Brothers Foundation, and the George and Frances Ball Foundation. E.K.S. is supported by R03 DK117253, R01DK121929 and JDRF 2-SRA-2017-498-M-B. L.A.D. is supported by 1UL1TR002529. We thank the following individuals who willingly shared their personal experiences of living with type 1 diabetes: James C. Garmey (diagnosed 1965); Lis Warren (diagnosed 1965); Karen Stancombe (diagnosed 1967); Debra A. Ignaut (diagnosed 1977); Patrick A. Fueger (diagnosed 1984); Todd Nebesio (diagnosed 1988); Roger Felton (diagnosed 1990); Jason Spaeth (diagnosed 1995) and his wife, Aubrey Spaeth; Kate Haynes (diagnosed 2002); and Staci Weaver (diagnosed 2006).

Author information

Affiliations

Authors

Contributions

E.K.S., A.L.J.C., R.A.O., L.A.D. and C.E.-M. wrote portions of the piece, provided comments and reviewed the final text.

Corresponding author

Correspondence to Carmella Evans-Molina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Medicine thanks the anonymous reviewers for their contribution to the peer review of this work. Joao Monteiro and Karen O’Leary were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sims, E.K., Carr, A.L.J., Oram, R.A. et al. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat Med 27, 1154–1164 (2021). https://doi.org/10.1038/s41591-021-01418-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing