Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biomarkers for neurodegenerative diseases

Abstract

Biomarkers for neurodegenerative diseases are needed to improve the diagnostic workup in the clinic but also to facilitate the development and monitoring of effective disease-modifying therapies. Positron emission tomography methods detecting amyloid-β and tau pathology in Alzheimer’s disease have been increasingly used to improve the design of clinical trials and observational studies. In recent years, easily accessible and cost-effective blood-based biomarkers detecting the same Alzheimer’s disease pathologies have been developed, which might revolutionize the diagnostic workup of Alzheimer’s disease globally. Relevant biomarkers for α-synuclein pathology in Parkinson’s disease are also emerging, as well as blood-based markers of general neurodegeneration and glial activation. This review presents an overview of the latest advances in the field of biomarkers for neurodegenerative diseases. Future directions are discussed regarding implementation of novel biomarkers in clinical practice and trials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Biomarkers for neurodegenerative diseases.
Fig. 2: Biomarker changes in AD.
Fig. 3: Potential use of blood-based biomarkers in primary care and pre-clinical trials.

References

  1. 1.

    GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106 (2019).

  2. 2.

    Prince, M. et al. World Alzheimer Report 2015. The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends. https://www.alzint.org/u/WorldAlzheimerReport2015.pdf (Alzheimer’s Disease International, 2015).

  3. 3.

    Seshadri, S. & Wolf, P. A. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol. 6, 1106–1114 (2007).

    PubMed  Google Scholar 

  4. 4.

    Buchhave, P. et al. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch. Gen. Psychiatry 69, 98–106 (2012).

    CAS  PubMed  Google Scholar 

  5. 5.

    Gordon, B. A. et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 17, 241–250 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013).

    CAS  PubMed  Google Scholar 

  7. 7.

    DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14, 32 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Peng, C., Trojanowski, J. Q. & Lee, V. M. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 16, 199–212 (2020).

    CAS  Google Scholar 

  9. 9.

    Braak, H. & Del Tredici, K. Potential pathways of abnormal tau and α-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases. Cold Spring Harb. Perspect. Biol. 8, a023630 (2016).

  10. 10.

    Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  Google Scholar 

  11. 11.

    De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. Cell 164, 603–615 (2016).

    PubMed  Google Scholar 

  12. 12.

    Bateman, R. J. et al. Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther. 3, 1 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bang, J., Spina, S. & Miller, B. L. Frontotemporal dementia. Lancet 386, 1672–1682 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Spillantini, M. G. & Goedert, M. Neurodegeneration and the ordered assembly of α-synuclein. Cell Tissue Res. 373, 137–148 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89, 88–100 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Walker, Z., Possin, K. L., Boeve, B. F. & Aarsland, D. Lewy body dementias. Lancet 386, 1683–1697 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hunter, C. A. et al. Medical costs of Alzheimer’s disease misdiagnosis among US Medicare beneficiaries. Alzheimers Dement. 11, 887–895 (2015).

    PubMed  Google Scholar 

  19. 19.

    Knopman, D. S. et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56, 1143–1153 (2001).

    CAS  PubMed  Google Scholar 

  20. 20.

    Rizzo, G. et al. Accuracy of clinical diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 89, 358–366 (2018).

    PubMed  Google Scholar 

  21. 21.

    Beach, T. G., Monsell, S. E., Phillips, L. E. & Kukull, W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J. Neuropathol. Exp. Neurol. 71, 266–273 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bradford, A., Kunik, M. E., Schulz, P., Williams, S. P. & Singh, H. Missed and delayed diagnosis of dementia in primary care: prevalence and contributing factors. Alzheimer Dis. Assoc. Disord. 23, 306–314 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Petersen, R. C. Clinical practice. Mild cognitive impairment. N. Engl. J. Med. 364, 2227–2234 (2011).

    CAS  PubMed  Google Scholar 

  24. 24.

    Rizzo, G. et al. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology 86, 566–576 (2016).

    PubMed  Google Scholar 

  25. 25.

    Respondek, G. et al. Validation of the Movement Disorder Society criteria for the diagnosis of 4-repeat tauopathies. Mov. Disord. 35, 171–176 (2020).

    PubMed  Google Scholar 

  26. 26.

    Sevigny, J. et al. Amyloid PET screening for enrichment of early-stage Alzheimer disease clinical trials: experience in a phase 1b clinical trial. Alzheimer Dis. Assoc. Disord. 30, 1–7 (2016).

    CAS  PubMed  Google Scholar 

  27. 27.

    Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Power, M. C. et al. Combined neuropathological pathways account for age-related risk of dementia. Ann. Neurol. 84, 10–22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Masters, C. L. et al. Alzheimer’s disease. Nat. Rev. Dis. Prim. 1, 15056 (2015).

    PubMed  Google Scholar 

  30. 30.

    Smedinga, M., Darweesh, S. K. L., Bloem, B. R., Post, B. & Richard, E. Towards early disease modification of Parkinson’s disease: a review of lessons learned in the Alzheimer field. J. Neurol. 268, 724–733 (2021).

    PubMed  Google Scholar 

  31. 31.

    Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    CAS  PubMed  Google Scholar 

  32. 32.

    Bateman, R. J. & Klunk, W. E. Measuring target effect of proposed disease-modifying therapies in Alzheimer’s disease. Neurotherapeutics 5, 381–390 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sierksma, A., Escott-Price, V. & De Strooper, B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science 370, 61–66 (2020).

    CAS  PubMed  Google Scholar 

  34. 34.

    Collij, L. E. et al. Multitracer model for staging cortical amyloid deposition using PET imaging. Neurology 95, e1538–e1553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mattsson, N., Palmqvist, S., Stomrud, E., Vogel, J. & Hansson, O. Staging β-amyloid pathology with amyloid positron emission tomography. JAMA Neurol. 76, 1319–1329 (2019).

  36. 36.

    Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8, 1214 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Clark, C. M. et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 11, 669–678 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Curtis, C. et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 72, 287–294 (2015).

    PubMed  Google Scholar 

  39. 39.

    Sabri, O. et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 11, 964–974 (2015).

    PubMed  Google Scholar 

  40. 40.

    Savva, G. M. et al. Age, neuropathology, and dementia. N. Engl. J. Med. 360, 2302–2309 (2009).

    CAS  PubMed  Google Scholar 

  41. 41.

    Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313, 1924–1938 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wolk, D. A. et al. Use of flutemetamol F 18-labeled positron emission tomography and other biomarkers to assess risk of clinical progression in patients with amnestic mild cognitive impairment. JAMA Neurol. 75, 1114–1123 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Donohue, M. C. et al. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317, 2305–2316 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Johnson, K. A. et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement. 9, E1–E16 (2013).

    Google Scholar 

  45. 45.

    Rabinovici, G. D. et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA 321, 1286–1294 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15, 673–684 (2016).

    CAS  PubMed  Google Scholar 

  47. 47.

    Palmqvist, S., Mattsson, N., Hansson, O. & Alzheimer’s Disease Neuroimaging, I. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain 139, 1226–1236 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Hansson, O., Lehmann, S., Otto, M., Zetterberg, H. & Lewczuk, P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s disease. Alzheimers Res. Ther. 11, 34 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Mattsson, N. et al. Clinical validity of cerebrospinal fluid Aβ42, tau, and phospho-tau as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol. Aging 52, 196–213 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    Kaplow, J. et al. Concordance of Lumipulse cerebrospinal fluid t-tau/Aβ42 ratio with amyloid PET status. Alzheimers Dement. 16, 144–152 (2020).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Hansson, O. et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 14, 1470–1481 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kuhlmann, J. et al. CSF Aβ1–42 – an excellent but complicated Alzheimer’s biomarker – a route to standardisation. Clin. Chim. Acta 467, 27–33 (2017).

    CAS  PubMed  Google Scholar 

  53. 53.

    Hansson, O. et al. The Alzheimer’s Association international guidelines for handling of cerebrospinal fluid for routine clinical measurements of amyloid β and tau. Alzheimers Dement. https://doi.org/10.1002/alz.12316 (2021).

    Article  PubMed  Google Scholar 

  54. 54.

    Shaw, L. M. et al. Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease. Alzheimers Dement 14, 1505–1521 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Janelidze, S. et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci. Rep. 6, 26801 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ovod, V. et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 13, 841–849 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Schindler, S. E. et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 93, e1647–e1659 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Nakamura, A. et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554, 249–254 (2018).

    CAS  PubMed  Google Scholar 

  59. 59.

    Palmqvist, S. et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol. 76, 1060–1069 (2019).

  60. 60.

    Verberk, I. M. W. et al. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes. Ann. Neurol. 84, 648–658 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Verberk, I. M. W. et al. Combination of plasma amyloid beta(1-42/1-40) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. Alzheimers Res. Ther. 12, 118 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Janelidze, S. et al. Detecting amyloid positivity in early Alzheimer’s disease using combinations of plasma Aβ42/Aβ40 and P-tau. Alzheimers Dement. (in the press).

  63. 63.

    Scholl, M. et al. Biomarkers for tau pathology. Mol. Cell Neurosci. 97, 18–33 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Pontecorvo, M. J. et al. Comparison of regional flortaucipir PET with quantitative tau immunohistochemistry in three subjects with Alzheimer’s disease pathology: a clinicopathological study. EJNMMI Res. 10, 65 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Smith, R., Wibom, M., Pawlik, D., Englund, E. & Hansson, O. Correlation of in vivo [18F]flortaucipir with postmortem Alzheimer disease tau pathology. JAMA Neurol. 76, 310–317 (2019).

    PubMed  Google Scholar 

  66. 66.

    Soleimani-Meigooni, D. N. et al. 18F-flortaucipir PET to autopsy comparisons in Alzheimer’s disease and other neurodegenerative diseases. Brain 143, 3477–3494 (2020).

    PubMed  Google Scholar 

  67. 67.

    Fleisher, A. S. et al. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol. 77, 829–839 (2020).

  68. 68.

    Leuzy, A. et al. Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders. JAMA Neurol. 77, 955–965 (2020).

  69. 69.

    Ossenkoppele, R. et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA 320, 1151–1162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Bejanin, A. et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140, 3286–3300 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Ossenkoppele, R. et al. Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease. Neurology 92, e601–e612 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Maass, A. et al. Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. J. Neurosci. 38, 530–543 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Johnson, K. A. et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann. Neurol. 79, 110–119 (2016).

    PubMed  Google Scholar 

  74. 74.

    Jack, C. R. et al. Predicting future rates of tau accumulation on PET. Brain 143, 3136–3150 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    La Joie, R. et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci. Transl. Med. 12, eaau5732 (2020).

  76. 76.

    Pontecorvo, M. J. et al. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia. Brain 142, 1723–1735 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Sperling, R. A. et al. The impact of amyloid-β and tau on prospective cognitive decline in older individuals. Ann. Neurol. 85, 181–193 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ossenkoppele, R. et al. Tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2021.1858 (2021).

  79. 79.

    Cho, H. et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann. Neurol. 80, 247–258 (2016).

    CAS  PubMed  Google Scholar 

  80. 80.

    Vogel, J. W. et al. Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat. Commun. 11, 2612 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Pascoal, T. A. et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 143, 2818–2830 (2020).

    PubMed  Google Scholar 

  82. 82.

    Sanchez, J. S. et al. The cortical origin and initial spread of medial temporal tauopathy in Alzheimer’s disease assessed with positron emission tomography. Sci. Transl. Med. 13, eabc0655 (2021).

  83. 83.

    Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139, 1551–1567 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Vogel, J. W. et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. https://doi.org/10.1038/s41591-021-01309-6 (2021).

  85. 85.

    Franzmeier, N. et al. Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat. Commun. 11, 347 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Jacobs, H. I. L. et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat. Neurosci. 21, 424–431 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Jack, C. R. Jr. et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain 141, 1517–1528 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Smith, R. et al. The accumulation rate of tau aggregates is higher in females and younger amyloid-positive subjects. Brain 143, 3805–3815 (2020).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Blennow, K. & Zetterberg, H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med. 284, 643–663 (2018).

    CAS  PubMed  Google Scholar 

  90. 90.

    Blennow, K. et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Aβ(1–42), pTau and tTau CSF immunoassays. Sci. Rep. 9, 19024 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Janelidze, S. et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 11, 1683 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Hanes, J. et al. Evaluation of a novel immunoassay to detect p-tau Thr217 in the CSF to distinguish Alzheimer disease from other dementias. Neurology 95, e3026–e3035 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Horie, K., Barthelemy, N. R., Sato, C. & Bateman, R. J. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 144, 515–527 (2020).

  94. 94.

    Blennow, K. et al. Cerebrospinal fluid tau fragment correlates with tau PET: a candidate biomarker for tangle pathology. Brain 143, 650–660 (2020).

    PubMed  Google Scholar 

  95. 95.

    Janelidze, S. et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 26, 379–386 (2020).

    CAS  PubMed  Google Scholar 

  96. 96.

    Lantero Rodriguez, J. et al. Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol. 140, 267–278 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324, 772–781 (2020).

    CAS  PubMed  Google Scholar 

  98. 98.

    Thijssen, E. H. et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 26, 387–397 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Karikari, T. K. et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 19, 422–433 (2020).

    CAS  PubMed  Google Scholar 

  100. 100.

    Karikari, T. K. et al. Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer’s Disease Neuroimaging Initiative. Mol. Psychiatry 26, 429–442 (2021).

  101. 101.

    Cullen, N. et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nat. Aging 1, 114–123 (2021).

    Google Scholar 

  102. 102.

    Cullen, N. C. et al. Plasma biomarkers of Alzheimer’s disease predict cognitive decline and could improve clinical trials in the cognitively unimpaired elderly (submitted, 2021).

  103. 103.

    Mattsson-Carlgren, N. et al. Longitudinal plasma p-tau217 is increased in early stages of Alzheimer’s disease. Brain 143, 3234–3241 (2020).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Mattsson-Carlgren, N. et al. Soluble P-tau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau. EMBO Mol. Med. https://doi.org/10.15252/emmm.202114022 (2021).

  105. 105.

    O’Connor, A. et al. Plasma phospho-tau181 in presymptomatic and symptomatic familial Alzheimer’s disease: a longitudinal cohort study. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0838-x (2020).

  106. 106.

    Palmqvist, S. et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol. Med. 11, e11170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Janelidze, S. et al. Associations of plasma phospho-tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurol. 78, 149–156 (2020).

  108. 108.

    Barthelemy, N. R. et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat. Med. 26, 398–407 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Mattsson-Carlgren, N. et al. Abeta deposition is associated with increases in soluble and phosphorylated tau that precede a positive tau PET in Alzheimer’s disease. Sci. Adv. 6, eaaz2387 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 98, 861–864 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Parnetti, L. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 18, 573–586 (2019).

    CAS  PubMed  Google Scholar 

  112. 112.

    Fairfoul, G. et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 3, 812–818 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Rossi, M. et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 140, 49–62 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Kang, U. J. et al. Comparative study of cerebrospinal fluid α-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov. Disord. 34, 536–544 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Singer, W. et al. Alpha-synuclein oligomers and neurofilament light chain in spinal fluid differentiate multiple system atrophy from Lewy body synucleinopathies. Ann. Neurol. 88, 503–512 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Shahnawaz, M. et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578, 273–277 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Wang, Z. et al. Skin α-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol. 78, 1–11 (2020).

  118. 118.

    Manne, S. et al. Blinded RT-QuIC analysis of alpha-synuclein biomarker in skin tissue from Parkinson’s disease patients. Mov. Disord. 35, 2230–2239 (2020).

    CAS  PubMed  Google Scholar 

  119. 119.

    Cullen, N. C. et al. Comparing progression biomarkers in clinical trials of early Alzheimer’s disease. Ann. Clin. Transl. Neurol. 7, 1661–1673 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Brooks, D. J. Imaging approaches to Parkinson disease. J. Nucl. Med. 51, 596–609 (2010).

    CAS  PubMed  Google Scholar 

  121. 121.

    Matuskey, D. et al. Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann. Neurol. 87, 329–338 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Mecca, A. P. et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 16, 974–982 (2020).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Chen, M. K. et al. Comparison of [11C]UCB-J and [18F]FDG PET in Alzheimer’s disease: a tracer kinetic modeling study. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X211004312 (2021).

  124. 124.

    Chetelat, G. et al. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 19, 951–962 (2020).

    CAS  PubMed  Google Scholar 

  125. 125.

    Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Ashton, N. et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat. Commun. https://doi.org/10.1038/s41467-021-23620-z (2021).

  127. 127.

    Preische, O. et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med. 25, 277–283 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Delcoigne, B. et al. Blood neurofilament light levels segregate treatment effects in multiple sclerosis. Neurology 94, e1201–e1212 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Olsson, B. et al. NFL is a marker of treatment response in children with SMA treated with nusinersen. J. Neurol. 266, 2129–2136 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Portelius, E. et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol. 136, 363–376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Portelius, E. et al. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain 138, 3373–3385 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Verberk, I. M. W. et al. Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longevity 2, E87–E95 (2021).

  133. 133.

    Cicognola, C. et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res. Ther. 13, 68 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Heller, C. et al. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 91, 263–270 (2020).

    PubMed  Google Scholar 

  135. 135.

    Elschot, E. P. et al. A comprehensive view on MRI techniques for imaging blood–brain barrier integrity. Invest. Radio. 56, 10–19 (2021).

    Google Scholar 

  136. 136.

    Janelidze, S. et al. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol. Aging 51, 104–112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Mintun, M. A. et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 384, 1691–1704 (2021).

  139. 139.

    Palmqvist, S. et al. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nat. Med. https://doi.org/10.1038/s41591-021-01348-z (2021).

  140. 140.

    Tornquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667–8684 (2018).

    Google Scholar 

  141. 141.

    Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Josephs, K. A. et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of β-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol. 133, 705–715 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Scheres, S. H. W., Zhang, W., Falcon, B. & Goedert, M. Cryo-EM structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17–25 (2020).

    CAS  PubMed  Google Scholar 

  144. 144.

    Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    CAS  PubMed  Google Scholar 

  145. 145.

    Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713 (2020).

    CAS  Google Scholar 

  146. 146.

    Borghammer, P. & Van Den Berge, N. Brain-first versus gut-first Parkinson’s disease: a hypothesis. J. Parkinsons Dis. 9, S281–S295 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    van Es, M. A. et al. Amyotrophic lateral sclerosis. Lancet 390, 2084–2098 (2017).

    Google Scholar 

  148. 148.

    Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the following researchers who provided important input to this paper: A. Leuzy, J. Vogel, N. Mattsson-Carlgren, N. Cullen, O. Strandberg, R. Ossenkoppele, R. Smith, S. Palmqvist and S. Janelidze. O.H. was supported by the Swedish Research Council (2016-00906), the Knut and Alice Wallenberg foundation (2017-0383), the Marianne and Marcus Wallenberg foundation (2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer Foundation (AF-939932), the Swedish Brain Foundation (FO2019-0326), The Parkinson Foundation of Sweden (1280/20), the Skåne University Hospital Foundation (2020-O000028), Regionalt Forskningsstöd (2020-0314) and the Swedish federal government under the ALF agreement (2018-Projekt0279).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oskar Hansson.

Ethics declarations

Competing interests

O.H. acquired research support (for the institution) from AVID Radiopharmaceuticals, Biogen, Eli Lilly, Eisai, GE Healthcare, Pfizer and Roche. In the past 2 years, he has received consultancy/speaker fees from AC Immune, Alzpath, Biogen, Cerveau and Roche.

Additional information

Peer review information Nature Medicine thanks Berislav Zlokovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Joao Monteiro was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hansson, O. Biomarkers for neurodegenerative diseases. Nat Med 27, 954–963 (2021). https://doi.org/10.1038/s41591-021-01382-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing