Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

HEART DISEASE

Deep learning for detecting congenital heart disease in the fetus

New advances in machine learning could facilitate and reduce disparities in the prenatal diagnosis of congenital health disease, the most common and lethal birth defect.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conflicting drivers of prenatal diagnosis of CHD, and the mechanism by which technological advances such as machine learning have the potential to both improve access but also possibly increase disparities.

References

  1. Marelli, A. J., Mackie, A. S., Ionescu-Ittu, R., Rahme, E. & Pilote, L. Circulation 115, 163–172 (2007).

    Article  Google Scholar 

  2. Peyvandi, S. et al. JAMA Pediatr. 170, e154450 (2016).

    Article  Google Scholar 

  3. Quartermain, M. D. et al. Pediatr. Cardiol. 40, 489–496 (2019).

    Article  Google Scholar 

  4. Quartermain, M. D. et al. Pediatrics 136, e378–e385 (2015).

    Article  Google Scholar 

  5. Campbell, M. J. et al. Prenat. Diagn. 41, 341–346 (2020).

    Article  Google Scholar 

  6. van Nisselrooij, A. E. L. et al. Ultrasound Obstet. Gynecol. 55, 747–757 (2020).

    Article  CAS  Google Scholar 

  7. Pinto, N. M. et al. Ultrasound Obstet. Gynecol. 40, 418–425 (2012).

    Article  CAS  Google Scholar 

  8. Krishnan, A. et al. Circulation https://doi.org/10.1161/CIRCULATIONAHA.120.053062 (2021).

  9. Arnaout, R. et al. Nat. Med. https://doi.org/10.1038/s41591-021-01342-5 (2021).

  10. Cuocolo, R., Perillo, T., Rosa, E. D., Ugga, L. & Petretta, M. J. Geriatric. Cardiol. 16, 601–607 (2019).

    Google Scholar 

  11. Ghorbani, A. et al. NPJ Digit. Med. 3, 10 (2020).

    Article  Google Scholar 

  12. Wu, Y. et al. JAMA Pediatr. 174, e195316 (2020).

    Article  Google Scholar 

  13. Hancock, H. S. et al. Cardiol. Young 28, 561–570 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaine A. Morris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, S.A., Lopez, K.N. Deep learning for detecting congenital heart disease in the fetus. Nat Med 27, 764–765 (2021). https://doi.org/10.1038/s41591-021-01354-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-021-01354-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing