Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep learning in histopathology: the path to the clinic

Abstract

Machine learning techniques have great potential to improve medical diagnostics, offering ways to improve accuracy, reproducibility and speed, and to ease workloads for clinicians. In the field of histopathology, deep learning algorithms have been developed that perform similarly to trained pathologists for tasks such as tumor detection and grading. However, despite these promising results, very few algorithms have reached clinical implementation, challenging the balance between hope and hype for these new techniques. This Review provides an overview of the current state of the field, as well as describing the challenges that still need to be addressed before artificial intelligence in histopathology can achieve clinical value.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CPATH for tissue segmentation.
Fig. 2: Validation of CPATH algorithms.

References

  1. 1.

    Yu, K. H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).

    PubMed  Google Scholar 

  2. 2.

    Hamet, P. & Tremblay, J. Artificial intelligence in medicine. Metabolism 69, S36–S40 (2017).

    CAS  Google Scholar 

  3. 3.

    Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).

    PubMed  Google Scholar 

  4. 4.

    Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).

    PubMed  Google Scholar 

  5. 5.

    Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology – new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Fuchs, T. J. & Buhmann, J. M. Computational pathology: challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 35, 515–530 (2011).

    PubMed  Google Scholar 

  8. 8.

    Louis, D. N. et al. Computational pathology: an emerging definition. Arch. Pathol. Lab. Med. 138, 1133–1138 (2014).

    PubMed  Google Scholar 

  9. 9.

    Mendelsohn, M. L., Kolman, W. A., Perry, B. & Prewitt, J. M. Computer analysis of cell images. Postgrad. Med. 38, 567–573 (1965).

    CAS  PubMed  Google Scholar 

  10. 10.

    Zwanenburg, A. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338 (2020).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108–113 (2011).

    Google Scholar 

  12. 12.

    Kather, J. N. et al. Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6, 27988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Madabhushi, A. & Lee, G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Srinidhi, C. L., Ciga, O. & Martel, A. L. Deep neural network models for computational histopathology: a survey. Med. Image Anal. 67, 101813 (2021).

    PubMed  Google Scholar 

  15. 15.

    Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M. & Schmidhuber, J. Flexible, high performance convolutional neural networks for image classification. In Proc. 22nd International Joint Conference on Artificial Intelligence 1237–1242 (2011).

  16. 16.

    Cireşan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. In Proc. Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science Vol. 8150, 411–418 (2013).

  17. 17.

    Cruz-Roa, A. et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Proc. SPIE Medical Imaging Vol. 9041, 904103 (2014).

  18. 18.

    Ertosun, M. G. & Rubin, D. L. Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. In Proc. American Medical Informatics Association Annual Symposium 1899–1908 (2015).

  19. 19.

    Wong, G. L. et al. Artificial intelligence in prediction of non-alcoholic fatty liver disease and fibrosis. J. Gastroenterol. Hepatol. 36, 543–550 (2021).

    PubMed  Google Scholar 

  20. 20.

    Hermsen, M. et al. Deep learning–based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 30, 1968–1979 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Litjens, G. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Litjens, G. et al. 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience 7, giy065 (2018).

    PubMed Central  Google Scholar 

  23. 23.

    Liu, Y. et al. Detecting cancer metastases on gigapixel pathology images. Preprint at https://arxiv.org/abs/1703.02442 (2017).

  24. 24.

    White House Office of Science and Technology Policy. Preparing for the Future of Artificial Intelligence (2016); https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf

  25. 25.

    Wang, D., Khosla, A., Gargeya, R., Irshad, H. & Beck, A. H. Deep learning for identifying metastatic breast cancer. Preprint at https://arxiv.org/abs/1606.05718 (2016).

  26. 26.

    Wang, X. et al. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans. Cybern. 50, 3950–3962 (2019).

    PubMed  Google Scholar 

  27. 27.

    Syrykh, C. et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digital Med. 3, 63 (2020).

    Google Scholar 

  28. 28.

    Tabibu, S., Vinod, P. K. & Jawahar, C. V. Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning. Sci. Rep. 9, 10509 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sari, C. T. & Gunduz-Demir, C. Unsupervised feature extraction via deep learning for histopathological classification of colon tissue images. IEEE Trans. Med. Imaging 38, 1139–1149 (2019).

    PubMed  Google Scholar 

  30. 30.

    Rawat, R. R. et al. Deep learned tissue ‘fingerprints’ classify breast cancers by ER/PR/Her2 status from H&E images. Sci. Rep. 10, 7275 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lee, B. & Paeng, K. A robust and effective approach towards accurate metastasis detection and pN-stage classification in breast cancer. In Proc. Medical Image Computing and Computer Assisted Intervention, Lecture Notes in Computer Science Vol. 11071, 841–850 (2018).

  32. 32.

    Awan, R., Koohbanani, N. A., Shaban, M., Lisowska, A. & Rajpoot, N. Context-aware learning using transferable features for classification of breast cancer histology images. In Proc. International Conference on Image Analysis and Recognition 788–795 (2018).

  33. 33.

    Feng, Y., Zhang, L. & Mo, J. Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 91–101 (2020).

    PubMed  Google Scholar 

  34. 34.

    Galateau Salle, F. et al. Comprehensive molecular and pathologic evaluation of transitional mesothelioma assisted by deep learning approach: a multi-institutional study of the international mesothelioma panel from the MESOPATH Reference Center. J. Thorac. Oncol. 15, 1037–1053 (2020).

    CAS  PubMed  Google Scholar 

  35. 35.

    Iizuka, O. et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci. Rep. 10, 1504 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kiani, A. et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digital Med. 3, 23 (2020).

    Google Scholar 

  37. 37.

    Kwok, S. Multiclass classification of breast cancer in whole-slide images. In Proc. International Conference on Image Analysis and Recognition 931–940 (2018).

  38. 38.

    Wei, J. W. et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 9, 3358 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Yang, H., Kim, J. Y., Kim, H. & Adhikari, S. P. Guided soft attention network for classification of breast cancer histopathology images. IEEE Trans. Med. Imaging 39, 1306–1315 (2020).

    PubMed  Google Scholar 

  40. 40.

    Pinckaers, H. & Litjens, G. Neural ordinary differential equations for semantic segmentation of individual colon glands. Preprint at https://arxiv.org/abs/1910.10470 (2019).

  41. 41.

    Naylor, P., Lae, M., Reyal, F. & Walter, T. Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38, 448–459 (2019).

    PubMed  Google Scholar 

  42. 42.

    Long, F. Microscopy cell nuclei segmentation with enhanced U-Net. BMC Bioinformatics 21, 8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Jia, Z., Huang, X., Chang, E. I.-C. & Xu, Y. Constrained deep weak supervision for histopathology image segmentation. IEEE Trans. Med. Imaging 36, 2376–2388 (2017).

    PubMed  Google Scholar 

  44. 44.

    Graham, S. et al. MILD-Net: minimal information loss dilated network for gland instance segmentation in colon histology images. Med. Image Anal. 52, 199–211 (2019).

    PubMed  Google Scholar 

  45. 45.

    Graham, S. et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019).

    PubMed  Google Scholar 

  46. 46.

    Agarwalla, A., Shaban, M. & Rajpoot, N. M. Representation-aggregation networks for segmentation of multi-gigapixel histology images. Preprint at https://arxiv.org/abs/1707.08814 (2017).

  47. 47.

    Bueno, G., Fernandez-Carrobles, M. M., Gonzalez-Lopez, L. & Deniz, O. Glomerulosclerosis identification in whole slide images using semantic segmentation. Comput. Methods Prog. Biomed. 184, 105273 (2020).

    Google Scholar 

  48. 48.

    Chen, H. et al. DCAN: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017).

    PubMed  Google Scholar 

  49. 49.

    de Bel, T. et al. Automatic segmentation of histopathological slides of renal tissue using deep learning. in Proc. SPIE Medical Imaging Digital Pathology, 1058112 (2018); https://doi.org/10.1117/12.2293717

  50. 50.

    Xu, G. et al. CAMEL: a weakly supervised learning framework for histopathology image segmentation. In Proc. International Conference on Computer Vision 10681–10690 (2019).

  51. 51.

    Sirinukunwattana, K. et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35, 1196–1206 (2016).

    PubMed  Google Scholar 

  52. 52.

    Swiderska-Chadaj, Z. et al. Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 58, 101547 (2019).

    PubMed  Google Scholar 

  53. 53.

    Le, H. et al. Utilizing automated breast cancer detection to identify spatial distributions of tumor-infiltrating lymphocytes in invasive breast cancer. Am. J. Pathol. 190, 1491–1504 (2020).

    PubMed  Google Scholar 

  54. 54.

    Akbar, S. et al. Automated and manual quantification of tumour cellularity in digital slides for tumour burden assessment. Sci. Rep. 9, 14099 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Hou, L. et al. Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognit. 86, 188–200 (2019).

    PubMed  Google Scholar 

  56. 56.

    Veta, M. et al. Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019).

    PubMed  Google Scholar 

  57. 57.

    Tellez, D. et al. Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37, 2126–2136 (2018).

    Google Scholar 

  58. 58.

    Mahmood, T., Arsalan, M., Owais, M., Lee, M. B. & Park, K. R. Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs. J. Clin. Med. 9, 749 (2020).

    PubMed Central  Google Scholar 

  59. 59.

    Chen, H., Wang, X. & Heng, P. A. Automated mitosis detection with deep regression networks. In Proc. IEEE International Symposium on Biomedical Imaging 1204–1207 (2016).

  60. 60.

    Li, C. et al. Weakly supervised mitosis detection in breast histopathology images using concentric loss. Med. Image Anal. 53, 165–178 (2019).

    PubMed  Google Scholar 

  61. 61.

    Nagpal, K. et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digital Med. 2, 48 (2019).

    Google Scholar 

  62. 62.

    Jansen, I. et al. Automated detection and grading of non-muscle-invasive urothelial cell carcinoma of the bladder. Am. J. Pathol. 190, 1483–1490 (2020).

    PubMed  Google Scholar 

  63. 63.

    Karimi, D. et al. Deep learning-based Gleason grading of prostate cancer from histopathology images—role of multiscale decision aggregation and data augmentation. IEEE J. Biomed. Health Inform. 24, 1413–1426 (2020).

    PubMed  Google Scholar 

  64. 64.

    Korde, L. A. et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J. Clin. Oncol. https://doi.org/10.1200/JCO.20.03399 (2021).

  65. 65.

    Balkenhol, M. et al. Deep learning assisted mitotic counting for breast cancer. Lab. Invest. 99, 1596–1606 (2019).

    PubMed  Google Scholar 

  66. 66.

    Ström, P. et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232 (2020).

    PubMed  Google Scholar 

  67. 67.

    Gertych, A. et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep. 9, 1483 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).

    CAS  PubMed  Google Scholar 

  69. 69.

    Saltz, J. et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 23, 181–193 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    AbdulJabbar, K. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat. Med. 26, 1054–1062 (2020).

    CAS  PubMed  Google Scholar 

  71. 71.

    Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16, e1002730 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Geessink, O. G. F. et al. Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer. Cell. Oncol. 42, 331–341 (2019).

    Google Scholar 

  73. 73.

    Kapil, A. et al. DASGAN–joint domain adaptation and segmentation for the analysis of epithelial regions in histopathology PD-L1 images. Preprint at https://arxiv.org/abs/1906.11118 (2019).

  74. 74.

    Sha, L. et al. Multi-field-of-view deep learning model predicts non small cell lung cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images. J. Pathol. Inform. 10, 24 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Zhang, Z. et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 1, 236–245 (2019).

    Google Scholar 

  77. 77.

    Zhou, C. et al. Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning. Comput. Med. Imaging Graph. 88, 101861 (2021).

    PubMed  Google Scholar 

  78. 78.

    Song, Z. et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 11, 4294 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Albarqouni, S. et al. AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35, 1313–1321 (2016).

    PubMed  Google Scholar 

  80. 80.

    Amgad, M. et al. Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics 35, 3461–3467 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Bulten, W. et al. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Sci. Rep. 9, 864 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Valkonen, M. et al. Cytokeratin-supervised deep learning for automatic recognition of epithelial cells in breast cancers stained for ER, PR, and Ki-67. IEEE Trans. Med. Imaging 39, 534–542 (2020).

    PubMed  Google Scholar 

  83. 83.

    Alemi Koohbanani, N., Jahanifar, M., Zamani Tajadin, N. & Rajpoot, N. NuClick: a deep learning framework for interactive segmentation of microscopic images. Med. Image Anal. 65, 101771 (2020).

    PubMed  Google Scholar 

  84. 84.

    Bokhorst, J. M. et al. Learning from sparsely annotated data for semantic segmentation in histopathology images. In Proc. International Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research Vol. 102, 84–91 (2019).

  85. 85.

    Brieu, N. et al. Domain adaptation-based augmentation for weakly supervised nuclei detection. Preprint at https://arxiv.org/abs/1907.04681 (2019).

  86. 86.

    Gadermayr, M., Gupta, L., Klinkhammer, B. M., Boor, P. & Merhof, D. Unsupervisedly training GANs for segmenting digital pathology with automatically generated annotations. In Proc. International Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research Vol. 102, 175–184 (2019).

  87. 87.

    Liang, Q. et al. Weakly supervised biomedical image segmentation by reiterative learning. IEEE J. Biomed. Health Inform. 23, 1205–1214 (2019).

    PubMed  Google Scholar 

  88. 88.

    Gao, S. et al. Using case-level context to classify cancer pathology reports. PLoS ONE 15, e0232840 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Alawad, M. et al. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks. J. Am. Med. Inform. Assoc. 27, 89–98 (2020).

    PubMed  Google Scholar 

  90. 90.

    Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    CAS  PubMed  Google Scholar 

  91. 91.

    Pawlowski, N. et al. Needles in haystacks: on classifying tiny objects in large images. Preprint at https://arxiv.org/abs/1908.06037 (2019).

  92. 92.

    Ilse, M., Tomczak, J. M. & Welling, M. Attention-based deep multiple instance learning. In Proc. International Conference on Machine Learning, Proceedings of Machine Learning Research Vol. 80, 2127–2136 (2018).

  93. 93.

    Hou, L. et al. Patch-based convolutional neural network for whole slide tissue image classification. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2424–2433 (2016).

  94. 94.

    Lu, M. Y. et al. Data efficient and weakly supervised computational pathology on whole slide images. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-00682-w (2021).

  95. 95.

    Tellez, D., Litjens, G., van der Laak, J. & Ciompi, F. Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43, 567–578 (2021).

    PubMed  Google Scholar 

  96. 96.

    Pinckaers, J. H. F. M., van Ginneken, B. & Litjens, G. Streaming convolutional neural networks for end-to-end learning with multi-megapixel images. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2020.3019563 (2020).

  97. 97.

    Wulczyn, E. et al. Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE 15, e0233678 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Skrede, O. J. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Lancet 395, 350–360 (2020).

    CAS  PubMed  Google Scholar 

  99. 99.

    Saillard, C. et al. Predicting survival after hepatocellular carcinoma resection using deep-learning on histological slides. Hepatology 72, 2000–2013 (2020).

    PubMed  Google Scholar 

  100. 100.

    Qaiser, T. et al. Digital tumor-collagen proximity signature predicts survival in diffuse large B-cell lymphoma. In Proc. European Congress on Digital Pathology, Lecture Notes in Computer Science Vol. 11435, 163–171 (2019).

  101. 101.

    Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl Acad. Sci. USA 115, E2970–E2979 (2018).

    CAS  PubMed  Google Scholar 

  102. 102.

    Bychkov, D. et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8, 3395 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25, 1519–1525 (2019).

    CAS  PubMed  Google Scholar 

  104. 104.

    Kulkarni, P. M. et al. Deep learning based on standard H&E images of primary melanoma tumors identifies patients at risk for visceral recurrence and death. Clin. Cancer Res. 26, 1126–1134 (2020).

    CAS  PubMed  Google Scholar 

  105. 105.

    Cui, D., Liu, Y., Liu, G. & Liu, L. A multiple-instance learning-based convolutional neural network model to detect the IDH1 mutation in the histopathology images of glioma tissues. J. Comput. Biol. 27, 1264–1272 (2020).

    CAS  PubMed  Google Scholar 

  106. 106.

    Liu, S. et al. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning. Sci. Rep. 10, 7733 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    Google Scholar 

  110. 110.

    Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Couture, H. D. et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 4, 30 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Sirinukunwattana, K. et al. Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut 70, 544–554 (2021).

    CAS  PubMed  Google Scholar 

  113. 113.

    Durán, J. M. & Jongsma, K. R. Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. J. Med Ethics https://doi.org/10.1136/medethics-2020-106820 (2021).

  114. 114.

    Abels, E. et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. J. Pathol. 249, 286–294 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17, 195 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).

    CAS  PubMed  Google Scholar 

  117. 117.

    Panch, T., Mattie, H. & Atun, R. Artificial intelligence and algorithmic bias: implications for health systems. J. Glob. Health 9, 010318 (2019).

    PubMed  Google Scholar 

  118. 118.

    de Bel, T., Hermsen, M., Kers, J., van der Laak, J. & Litjens, G. J. S. Stain-transforming cycle-consistent generative adversarial networks for improved segmentation of renal histopathology. In Proc. International Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research Vol. 102, 151–163 (2019).

  119. 119.

    Liu, Y. et al. Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch. Pathol. Lab. Med. 143, 859–868 (2019).

    CAS  PubMed  Google Scholar 

  120. 120.

    Tellez, D. et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019).

    PubMed  Google Scholar 

  121. 121.

    Cho, H., Lim, S., Choi, G. & Min, H. Neural stain-style transfer learning using GAN for histopathological images. Preprint at https://arxiv.org/abs/1710.08543 (2017).

  122. 122.

    Janowczyk, A., Basavanhally, A. & Madabhushi, A. Stain Normalization using Sparse AutoEncoders (StaNoSA): application to digital pathology. Comput. Med. Imaging Graph. 57, 50–61 (2017).

    PubMed  Google Scholar 

  123. 123.

    Shaban, M. T., Baur, C., Navab, N. & Albarqouni, S. StainGAN: stain style transfer for digital histological images. In Proc. IEEE International Symposium on Biomedical Imaging 953–956 (2019).

  124. 124.

    Zheng, Y. et al. Stain standardization capsule for application-driven histopathological image normalization. IEEE J. Biomed. Health Inform. 25, 337–347 (2021).

    PubMed  Google Scholar 

  125. 125.

    Linmans, J., van der Laak, J. & Litjens, G. Efficient out-of-distribution detection in digital pathology using multi-head convolutional neural networks. In Proc. Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research Vol. 121, 465–478 (2020).

  126. 126.

    Kohl, S. et al. A probabilistic U-Net for segmentation of ambiguous images. Adv. Neural Inf. Process. Syst. (2018).

  127. 127.

    Kleppe, A. et al. Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 21, 199–211 (2021).

    CAS  PubMed  Google Scholar 

  128. 128.

    Staartjes, V. E. & Kernbach, J. M. Significance of external validation in clinical machine learning: let loose too early. Spine J. 20, 1159–1160 (2020).

    PubMed  Google Scholar 

  129. 129.

    Beede, E. et al. A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In Proc. CHI Conference on Human Factors in Computing Systems 1–12 (2020).

  130. 130.

    Dudgeon, S. N. et al. A pathologist-annotated dataset for validating artificial intelligence: a project description and pilot study. Preprint at https://arxiv.org/abs/2010.06995 (2020).

  131. 131.

    Nagendran, M. et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368, m689 (2020).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Allen, T. C. Regulating artificial intelligence for a successful pathology future. Arch. Pathol. Lab. Med. 143, 1175–1179 (2019).

    PubMed  Google Scholar 

  133. 133.

    Dong, J. et al. Clinical trials for artificial intelligence in cancer diagnosis: a cross-sectional study of registered trials in ClinicalTrials.gov. Front. Oncol. 15, 1629 (2020).

    Google Scholar 

  134. 134.

    Collins, G. S. & Moons, K. G. M. Reporting of artificial intelligence prediction models. Lancet 393, 1577–1579 (2019).

    PubMed  Google Scholar 

  135. 135.

    Chen, P. H. C. et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat. Med. 25, 1453–1457 (2019).

    CAS  PubMed  Google Scholar 

  136. 136.

    Guidotti, R. et al. A survey of methods for explaining black box models. ACM Comput. Surv. 51, 93 (2019).

    Google Scholar 

  137. 137.

    Kroll, J. A. The fallacy of inscrutability. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20180084 (2018).

    Google Scholar 

  138. 138.

    US Food and Drug Administration (FDA). Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)—Discussion Paper and Request for Feedback. https://www.fda.gov/files/medicaldevices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf (accessed 3 May, 2021).

  139. 139.

    Price, W. N. & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25, 37–43 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Laï, M. C., Brian, M. & Mamzer, M. F. Perceptions of artificial intelligence in healthcare: findings from a qualitative survey study among actors in France. J. Transl. Med. 18, 14 (2020).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Rieke, N. et al. The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Sheller, M. J. et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10, 12598 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    European Commission. Ethics Guidelines for Trustworthy AI (2019); https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

  144. 144.

    Sirinukunwattana, K. et al. Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017).

    PubMed  Google Scholar 

  145. 145.

    Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Proc. Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science Vol. 9351, 234–241 (2015).

Download references

Acknowledgements

We thank M. Hermsen for providing Fig. 1. J.v.d.L. acknowledges funding from the Knut and Alice Wallenberg Foundation, Sweden, and received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 945358. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA. G.L. acknowledges funding from the Dutch Cancer Society (KUN 2015-7970) and the Netherlands Organization for Scientific Research (NWO; project number 016.186.152). F.C. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 825292 (ExaMode, http://www.examode.eu/); the Dutch Cancer Society (KWF; project no. 11917); and the Netherlands Organization for Scientific Research (NWO; project no. 18388).

Author information

Affiliations

Authors

Contributions

All authors were involved in identifying relevant literature, and in drafting and revising the manuscript.

Corresponding author

Correspondence to Jeroen van der Laak.

Ethics declarations

Competing interests

J.v.d.L. is a member of the advisory boards of Philips, the Netherlands, and ContextVision, Sweden, and received research funding from Philips, the Netherlands, ContextVision, Sweden, and Sectra, Sweden, in the last 5 years. G.L. is a member of the Medical Advances Advisory Board of Vital Images (Minnetonka, USA), received research funding from Philips Digital Pathology Solutions (Best, the Netherlands) and had a consultancy role for Novartis (Basel, Switzerland). F.C. is chair of the Scientific and Medical Advisory Board of TRIBVN Healthcare (Paris, France).

Additional information

Peer review information Nature Medicine thanks Richard Levenson, Nasir Rajpoot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Joao Monteiro was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van der Laak, J., Litjens, G. & Ciompi, F. Deep learning in histopathology: the path to the clinic. Nat Med 27, 775–784 (2021). https://doi.org/10.1038/s41591-021-01343-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing