Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs

Abstract

Patients awaiting lung transplantation face high wait-list mortality, as injury precludes the use of most donor lungs. Although ex vivo lung perfusion (EVLP) is able to recover marginal quality donor lungs, extension of normothermic support beyond 6 h has been challenging. Here we demonstrate that acutely injured human lungs declined for transplantation, including a lung that failed to recover on EVLP, can be recovered by cross-circulation of whole blood between explanted human lungs and a Yorkshire swine. This xenogeneic platform provided explanted human lungs a supportive, physiologic milieu and systemic regulation that resulted in functional and histological recovery after 24 h of normothermic support. Our findings suggest that cross-circulation can serve as a complementary approach to clinical EVLP to recover injured donor lungs that could not otherwise be utilized for transplantation, as well as a translational research platform for immunomodulation and advanced organ bioengineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maintenance of explanted human lungs using a xenogeneic cross-circulation platform.
Fig. 2: Human lung function over the course of 24 h of xenogeneic cross-circulation.
Fig. 3: Multiscale analyses of human lungs over the course of 24 h of xenogeneic cross-circulation.
Fig. 4: Endovascular integrity and immunologic response over the course of xenogeneic cross-circulation.
Fig. 5: Maintenance of pulmonary airways and alveolar–capillary barrier after 24 h of xenogeneic cross-circulation.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the text, figures and Supplementary Information.

References

  1. World Health Organization. World Health Statistics 2017: Monitoring Health for the SDGs, Sustainable Development Goals (World Health Organization, 2017).

  2. Chambers, D. C. et al. The international thoracic organ transplant registry of the International Society for Heart and Lung Transplantation: thirty-fifth adult lung and heart-lung transplant report—2018; focus theme: multiorgan transplantation. J. Heart Lung Transplant. 37, 1169–1183 (2018).

    Article  PubMed  Google Scholar 

  3. Van Herck, A., Verleden, S. E., Vanaudenaerde, B. M., Verleden, G. M. & Vos, R. Prevention of chronic rejection after lung transplantation. J. Thorac. Dis. 9, 5472–5488 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sommer, W. et al. Extended criteria donor lungs and clinical outcome: results of an alternative allocation algorithm. J. Heart Lung Transplant. 32, 1065–1072 (2013).

    Article  PubMed  Google Scholar 

  5. Pinezich, M. & Vunjak-Novakovic, G. Bioengineering approaches to organ preservation ex vivo. Exp. Biol. Med. 244, 630–645 (2019).

    Article  CAS  Google Scholar 

  6. Guenthart, B. A. et al. Cell replacement in human lung bioengineering. J. Heart Lung Transplant. 38, 215–224 (2019).

    Article  PubMed  Google Scholar 

  7. Yamada, K. et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of α-1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat. Med. 11, 32–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Sykes, M. & Sachs, D. H. Transplanting organs from pigs to humans. Sci. Immunol. 4, eaau6298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cypel, M. et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N. Engl. J. Med. 364, 1431–1440 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. O’Neill, J. D. et al. Cross-circulation for extracorporeal support and recovery of the lung. Nat. Biomed. Eng. 1, 1–15 (2017).

    Article  CAS  Google Scholar 

  11. Loor, G. et al. Prolonged EVLP using OCS lung: cellular and acellular perfusates. Transplantation 101, 2303–2311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sommer, W. et al. Prediction of transplant outcome after 24‐hour ex vivo lung perfusion using the organ care system in a porcine lung transplantation model. Am. J. Transplant. 19, 345–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Spratt, J. R. et al. An experimental study of the recovery of injured porcine lungs with prolonged normothermic cellular ex vivo lung perfusion following donation after circulatory death. Transpl. Int. J. 30, 932–944 (2017).

    Article  CAS  Google Scholar 

  14. Guenthart, B. A. et al. Regeneration of severely damaged lungs using an interventional cross-circulation platform. Nat. Commun. 10, 1–16 (2019).

    Article  CAS  Google Scholar 

  15. Hozain, A. E. et al. Multi-day maintenance of extracorporeal lungs using cross-circulation with conscious swine. J. Thorac. Cardiovasc. Surg. 159, 1640–1653 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brigham, K. L. & Snell, J. D. In vivo assessment of pulmonary vascular integrity in experimental pulmonary edema. J. Clin. Invest. 52, 2041–2052 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Perrot, M., Liu, M., Waddell, T. K. & Keshavjee, S. Ischemia-reperfusion-induced lung injury. Am. J. Respir. Crit. Care Med. 167, 490–511 (2003).

    Article  PubMed  Google Scholar 

  18. Slama, A. et al. Standard donor lung procurement with normothermic ex vivo lung perfusion: a prospective randomized clinical trial. J. Heart Lung Transplant. 36, 744–753 (2017).

    Article  PubMed  Google Scholar 

  19. Warnecke, G. et al. Normothermic ex-vivo preservation with the portable organ care system lung device for bilateral lung transplantation (INSPIRE): a randomised, open-label, non-inferiority, phase 3 study. Lancet Respir. Med. 6, 357–367 (2018).

    Article  PubMed  Google Scholar 

  20. Loor, G. et al. Portable normothermic ex-vivo lung perfusion, ventilation, and functional assessment with the organ care system on donor lung use for transplantation from extended-criteria donors (EXPAND): a single-arm, pivotal trial. Lancet Respir. Med. 7, 975–984 (2019).

    Article  PubMed  Google Scholar 

  21. Andreasson, A. S. I. et al. Profiling inflammation and tissue injury markers in perfusate and bronchoalveolar lavage fluid during human ex vivo lung perfusion. Eur. J. Cardio-Thorac. Surg. 51, 577–586 (2017).

    Google Scholar 

  22. Okamoto, T., Wheeler, D., Farver, C. F. & McCurry, K. R. Transplant suitability of rejected human donor lungs with prolonged cold ischemia time in low-flow acellular and high-flow cellular ex vivo lung perfusion systems. Transplantation 103, 1799–1808 (2019).

    Article  PubMed  Google Scholar 

  23. Sadaria, M. R. et al. Cytokine expression profile in human lungs undergoing normothermic ex-vivo lung perfusion. Ann. Thorac. Surg. 92, 478–484 (2011).

    Article  PubMed  Google Scholar 

  24. Fujino, N. et al. Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab. Investig. J. Tech. Methods Pathol. 91, 363–378 (2011).

    Article  CAS  Google Scholar 

  25. Rock, J. R., Randell, S. H. & Hogan, B. L. M. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Model. Mech. 3, 545–556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tata, A. et al. Myoepithelial cells of submucosal glands can function as reserve stem cells to regenerate airways after injury. Cell Stem Cell 22, 668–683 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olajuyin, A. M., Zhang, X. & Ji, H.-L. Alveolar type 2 progenitor cells for lung injury repair. Cell Death Discov. 5, 63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Griesemer, A., Yamada, K. & Sykes, M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol. Rev. 258, 241–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Breimer, M. E. et al. Extracorporeal (‘ex vivo’) connection of pig kidneys to humans. I. Clinical data and studies of platelet destruction. Xenotransplantation 3, 328–339 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Baquerizo, A. et al. Characterization of human xenoreactive antibodies in liver failure patients exposed to pig hepatocytes after bioartificial liver treatment: an ex vivo model of pig to human xenotransplantation 1,2. Transplantation 67, 5 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Levy, M. F. et al. Liver allotransplantation after extracorporeal hepatic support with transgenic (hCD55/hCD59) porcine livers: clinical results and lack of pig-to-human transmission of the porcine endogenous retrovirus 1. Transplantation 69, 272 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Q. et al. Is sensitization to pig antigens detrimental to subsequent allotransplantation? Xenotransplantation 25, e12393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Scheffert, J. L. & Raza, K. Immunosuppression in lung transplantation. J. Thorac. Dis. 6, 1039–1053 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Cochrane, C. G., Müller-Eberhard, H. J. & Aikin, B. S. Depletion of plasma complement in vivo by a protein of cobra venom: its effect on various immunologic reactions. J. Immunol. 105, 55–69 (1970).

    CAS  PubMed  Google Scholar 

  35. OBERHOLZER, J. et al. Decomplementation with cobra venom factor prolongs survival of xenografted islets in a rat to mouse model. Immunology 97, 173–180 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haihua, C., Wei, W., Kun, H., Yuanli, L. & Fei, L. Cobra venom factor-induced complement depletion protects against lung ischemia reperfusion injury through alleviating blood-air barrier damage. Sci. Rep. 8, 1–8 (2018).

    Article  CAS  Google Scholar 

  37. Gorsuch, W. B., Guikema, B. J., Fritzinger, D. C., Vogel, C.-W. & Stahl, G. L. Humanized cobra venom factor decreases myocardial ischemia reperfusion injury. Mol. Immunol. 47, 506–510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Campos, M. M. et al. The role of migrating leukocytes in IL-1β-induced up-regulation of kinin B1 receptors in rats. Br. J. Pharmacol. 135, 1107–1114 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bickel, M. The role of interleukin-8 in inflammation and mechanisms of regulation. J. Periodontol. 64, 456–460 (1993).

    CAS  PubMed  Google Scholar 

  40. De Perrot, M. et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am. J. Respir. Crit. Care Med. 165, 211–215 (2002).

    Article  PubMed  Google Scholar 

  41. Andreasson, A. S. I. et al. The role of interleukin-1β as a predictive biomarker and potential therapeutic target during clinical ex vivo lung perfusion. J. Heart Lung Transplant. 36, 985–995 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 1813, 878–888 (2011).

    Article  CAS  Google Scholar 

  43. Halloran, P. F. et al. IFN-γ alters the pathology of graft rejection: protection from early necrosis. J. Immunol. 166, 7072–7081 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kawut, S. M. et al. Soluble P-selectin and the risk of primary graft dysfunction after lung transplantation. Chest 136, 237–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loss, M. et al. Acute vascular rejection is associated with systemic complement activation in a pig-to-primate kidney xenograft model. Xenotransplantation 7, 186–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. McCurry, K. R. et al. Humoral responses to pig-to-baboon cardiac transplantation: implications for the pathogenesis and treatment of acute vascular rejection and for accommodation. Hum. Immunol. 58, 91–105 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Zuber, J. & Sykes, M. Mechanisms of mixed chimerism-based transplant tolerance. Trends Immunol. 38, 829–843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuwaki, K. et al. Heart transplantation in baboons using α-1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat. Med. 11, 29–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, K. et al. Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc. Natl Acad. Sci. USA 111, 7260–7265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan, H. et al. Lymphodepletive effects of rabbit anti-pig thymocyte globulin in neonatal swines. Transpl. Immunol. 39, 74–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Bottino, R. et al. Safe use of anti-Cd154 monoclonal antibody in pig islet xenotransplantation in monkeys. Xenotransplantation 24, e12283 (2017).

    Article  Google Scholar 

  52. Nottle, M. B. et al. Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using Fok I-dCas9. Sci. Rep. 7, 1–8 (2017).

    Article  CAS  Google Scholar 

  53. Boneva, R. S. & Folks, T. M. Xenotransplantation and risks of zoonotic infections. Ann. Med. 36, 504–517 (2004).

    Article  PubMed  Google Scholar 

  54. Noordergraaf, J. et al. Pathogen elimination and prevention within a regulated, designated pathogen free, closed pig herd for long-term breeding and production of xenotransplantation materials. Xenotransplantation 25, e12428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Denner, J. The porcine virome and xenotransplantation. Virol. J. 14, 171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Godehardt, A. W., Costa, M. R. & Tönjes, R. R. Review on porcine endogenous retrovirus detection assays—impact on quality and safety of xenotransplants. Xenotransplantation 22, 95–101 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dieckhoff, B. et al. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 15, 36–45 (2008).

    Article  PubMed  Google Scholar 

  59. Andreasson, A. et al. The effect of ex vivo lung perfusion on microbial load in human donor lungs. J. Heart Lung Transplant. 33, 910–916 (2014).

    Article  PubMed  Google Scholar 

  60. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma. Oxf. Engl. 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  61. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinforma. Oxf. Engl. 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  62. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: Publication-ready Volcano Plots with Enhanced Colouring and Labeling. Bioconductor version: release (3.10) https://doi.org/10.18129/B9.bioc.EnhancedVolcano (2019).

  64. Subhash, S. & Kanduri, C. GeneSCF: a real-time based functional enrichment tool with support for multiple organisms. BMC Bioinf. 17, 365 (2016).

    Article  Google Scholar 

  65. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the following collaborators and supporters: Institute of Comparative Medicine veterinary staff, including A. Hubbard, S. Robertson, R. Ober, A. McLuckie, N. Herndon, D. Ordanes and A. Rivas for supporting animal studies; Weill Cornell Microscopy and Image Analysis Core Facility staff, including L. Cohen-Gould and J. P. Jimenez for transmission electron microscopy imaging services; Rockefeller University Electron Microscopy Resource Center staff, including K. Uyru and N. Soplop for scanning electron microscopy imaging services; Herbert Irving Comprehensive Cancer Center Molecular Pathology Shared Resources, including T. Wu, D. Sun and R. Chen for histology services; S. Chicotka, P. Liou, M. Foley, J. Diaz, M.S. Fultz, J. Adcock, N. Llore, E. Lopes, G. Pierre and I. Fedoriv for technical and analytical support; S. Pistilli, K. Fragoso and S. Halligan for administrative support. The authors gratefully acknowledge funding support from the National Institutes of Health (EB27062, HL007854, HL120046, HL134760), Mikati Foundation and Blavatnik Foundation (STAR grant).

Author information

Authors and Affiliations

Authors

Contributions

A.E.H., J.D.O., R.D., A.D.G., B.A.G., G.V.-N. and M.B. designed the study. A.E.H., J.D.O., M.R.P., Y.T., R.D., K.M.C., A.T., K.F., R.U., M.S., D.Q., J.W.S., N.L.C., J.T., J.K., Y.-W.C., A.R., B.A.G. and M.B. performed experiments. C.C.M. performed the blinded pathologic assessment. A.E.H., J.D.O., M.R.P., Y.T., K.M.C., A.T., M.S., J.A.R., E.C.R., D.Q. and H.-W.S. analyzed data. A.E.H., J.D.O., G.V.-N. and M.B. co-wrote the manuscript.

Corresponding authors

Correspondence to Matthew Bacchetta or Gordana Vunjak-Novakovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental setup and xenogeneic cross-circulation circuit parameters.

a, Schematic of xenogeneic cross-circulation with mean values of perfusion circuit parameters. To maintain pulmonary vein drainage, lungs were positioned approximately 10 cm higher than swine hosts (Δh). b, Immunosuppression regimen, including induction immunosuppression before cross-circulation and maintenance immunosuppression during cross-circulation. c, Experimental setup during xenogeneic cross-circulation procedure. d, Perfusion circuit connecting the vascular compartments of explanted human lungs and anesthetized swine host. e, Pulmonary artery and vein cannulas connecting explanted human lungs to the xenogeneic cross-circulation circuit. f, Swine host neck cannulation sites. Extracorporeal circuit parameters: g, Pressure. h, Flow. i, Temperature. All graphs represent data for human lungs (n = 5 independent experiments). All values represent mean ± standard deviation.

Extended Data Fig. 2 Multi-scale analyses of human lung 1.

a, Gross photography. b, Radiography. c, Bronchoscopy of left and right lung. d, PaO2/FiO2. e, Change in pO2p= |pPApPV|). f, Change in pCO2p= |pPApPV|). g, Lung weight. h, Dynamic compliance. i, Peak inspiratory pressure (PIP). j, Transpulmonary pressure gradient (TPG). k, Lactate. All graphs represent images and data for human lung 1 (n = 1 independent experiment). e-i, k, Data points represent a single value obtained at each time point. j, Data points represent mean ± standard deviation of all values obtained at each time point.

Extended Data Fig. 3 Multi-scale analyses of human lung 2.

a, Gross photography. b, Radiography. c, Bronchoscopy of left and right lung. d, PaO2/FiO2. e, Change in pO2p= |pPApPV|). f, Change in pCO2p= |pPApPV|). g, Lung weight. h, Dynamic compliance. i, Peak inspiratory pressure (PIP). j, Transpulmonary pressure gradient (TPG). k, Lactate. All graphs represent images and data for human lung 2 (n = 1 independent experiment). e-i, k, All data points represent a single value obtained at each time point. j, Data points represent mean ± standard deviation of all values obtained at each time point.

Extended Data Fig. 4 Multi-scale analyses of human lung 3.

a, Gross photography. b, Radiography. c, Bronchoscopy of left and right lung. d, PaO2/FiO2. e, Change in pO2p= |pPA – pPV|). f, Change in pCO2p= |pPApPV|). g, Lung weight. h, Dynamic compliance. i, Peak inspiratory pressure (PIP). j, Transpulmonary pressure gradient (TPG). k, Lactate. All graphs represent images and data for human lung 3 (n = 1 independent experiment). e-i, k, All data points represent a single value obtained at each time point. j, Data points represent mean ± standard deviation of all values obtained at each time point.

Extended Data Fig. 5 Multi-scale analyses of human lung 4.

a, Gross photography. b, Bronchoscopy. c, Histologic staining with hematoxylin and eosin. d, PaO2/FiO2. e, Change in pO2p= |pPApPV|). f, Change in pCO2p= |pPApPV|). g, Lung weight. h, Dynamic compliance. i, Peak inspiratory pressure (PIP). j, Transpulmonary pressure gradient (TPG). k, Lactate. All graphs represent images and data for human lung 4 (n = 1 independent experiment). d-k, All data points represent a single value obtained at each time point.

Extended Data Fig. 6 Multi-scale analyses of human lung 5.

a, Gross photography. b, Bronchoscopy. c, Histologic staining with hematoxylin and eosin. d, PaO2/FiO2. e, Change in pO2p= |pPApPV|). f, Change in pCO2p= |pPApPV|). g, Lung weight. h, Dynamic compliance. i, Peak inspiratory pressure (PIP). j, Transpulmonary pressure gradient (TPG). k, Lactate. All graphs represent images and data for human lung 5 (n = 1 independent experiment). d-k, All data points represent a single value obtained at each time point.

Extended Data Fig. 7 Histologic evaluation of human lung 1.

Micrographs of hematoxylin and eosin staining of upper and lower lobes. a, Lung parenchyma at low magnification. b, Lung parenchyma at high magnification. c, Small airways. d, Pulmonary vessels. e, Scanning electron micrographs of alveoli. f, Transmission electron micrographs of alveolar septa. Immunohistochemical staining of: g, HT2-280+ type II pneumocytes. h, Caveolin-1+ type I pneumocytes. i, CC10+ club cells and Mucin 5B+ goblet cells. j, α-tubulin+ ciliated cells. k, α-SMA+ submucosal glands. l, p63+ basal cells. m, CD31+ microvascular endothelial cells and ZO-3+ epithelial tight junctions. n, Vascular endothelial (VE)-Cadherin+ endothelial cells.

Extended Data Fig. 8 Histologic evaluation of human lung 2.

Micrographs of hematoxylin and eosin staining of upper and lower lobes: a, Lung parenchyma at low magnification. b, Lung parenchyma at high magnification. c, Small airways. d, Pulmonary vessels. e, Scanning electron micrographs of alveoli. f, Transmission electron micrographs of alveolar septa. Immunohistochemical staining of: g, HT2-280+ type II pneumocytes. h, Caveolin-1+ type I pneumocytes. i, CC10+ club cells and Mucin 5B+ goblet cells. j, α-tubulin+ ciliated cells. k, CD31+ microvascular endothelial cells and ZO-3+ epithelial tight junctions. l, Vascular endothelial (VE)-Cadherin+ endothelial cells.

Extended Data Fig. 9 Histologic evaluation of human lung 3.

Micrographs of hematoxylin and eosin staining of upper and lower lobes: a, Lung parenchyma at low magnification. b, Lung parenchyma at high magnification. c, Small airways. d, Pulmonary vessels. e, Scanning electron micrographs of alveoli. f, Transmission electron micrographs of alveolar septa. Immunohistochemical staining of: g, HT2-280+ type II pneumocytes. h, Caveolin-1+ type I pneumocytes. i, CC10+ club cells and Mucin 5B+ goblet cells. j, α-tubulin+ ciliated cells. k, CD31+ microvascular endothelial cells and ZO-3+ epithelial tight junctions. l, Vascular endothelial (VE)-Cadherin+ endothelial cells.

Extended Data Fig. 10 Envisioned applications of xenogeneic cross-circulation platform.

a, Clinical applications of human lungs recovered using xenogeneic cross-circulation. Injured human lungs can be recovered at organ recovery or transplant centers. Lungs recovered by cross-circulation could be transplanted into recipient patients awaiting transplantation. b, Research applications. Xenogeneic cross-circulation can be used as a physiologic bioreactor to maintain extracorporeal organs or grafts, enabling research and development of bioengineered constructs, advanced therapeutics, disease models, and investigation of cross-species immunological interactions. EVLP, ex vivo lung perfusion. XC, cross-circulation.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Supplementary Tables 1–14.

Reporting Summary

Supplementary Video 1

Evaluation of human lung recovery throughout 24 h xenogeneic cross-circulation.

Supplementary Video 2

Ventilation and recruitment of human lungs during 24 h of xenogeneic cross-circulation.

Supplementary Video 3

Live uptake of surfactant protein B by human lungs after 24 h of xenogeneic cross-circulation.

Supplementary Data 1

RNA sequencing raw data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hozain, A.E., O’Neill, J.D., Pinezich, M.R. et al. Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nat Med 26, 1102–1113 (2020). https://doi.org/10.1038/s41591-020-0971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-020-0971-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research