Abstract
Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients’ sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Multimodal NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver cells
Scientific Reports Open Access 01 July 2022
-
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials
Drug Delivery and Translational Research Open Access 04 May 2022
-
Emerging liver organoid platforms and technologies
Cell Regeneration Open Access 03 August 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Code Availability
Code of the shooting solver is available from https://github.com/MichaelKuecken/bileflow.
References
Torkamani, A., Andersen, K. G., Steinhubl, S. R. & Topol, E. J. High-definition medicine. Cell 170, 828–843 (2017).
Mills, S. E. Histology for Pathologists. (Lippincott Williams & Wilkins, 2012).
Nalbantoglu, I. L. K. & Brunt, E. M. Role of liver biopsy in nonalcoholic fatty liver disease. World J. Gastroenterol. 20, 9026–9037 (2014).
Tanaka, N. et al. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng. 1, 796–806 (2017).
Hägerling, R. et al. VIPAR, a quantitative approach to 3D histopathology applied to lymphatic malformations. JCI Insight 2, 1–14 (2017).
Morales-Navarrete, H. et al. A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture. eLife 4, 841 (2015).
Elias, H. A re-examination of the structure of the mammalian liver; the hepatic lobule and its relation to the vascular and biliary systems. Am. J. Anat. 85, 379–456 (1949). 15 pl.
Morales-Navarrete, H. et al. Liquid-crystal organization of liver tissue. eLife 8, 1035 (2019).
Treyer, A. & Müsch, A. Hepatocyte polarity. Compr. Physiol. 3, 243–287 (2013).
Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T. & Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 32, 713–741 (2016).
Richardson, D. S. & Lichtman, J. W. Clarifying tissue clearing. Cell 162, 246–257 (2015).
Meyer, K. et al. A predictive 3D multi-scale model of biliary fluid dynamics in the liver lobule. Cell Syst. 4, 277–290.e9 (2017).
Hardy, T., Oakley, F., Anstee, Q. M. & Day, C. P. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11, 451–496 (2016).
Brosch, M. et al. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat. Commun. 9, 4150 (2018).
Bedossa, P. Pathology of non-alcoholic fatty liver disease. Liver Int. 37, 85–89 (2017).
Hall, A. et al. Transaminase abnormalities and adaptations of the liver lobule manifest at specific cut-offs of steatosis. Sci. Rep. 7, 40977 (2017).
Wang, M.-J., Chen, F., Lau, J. T. Y. & Hu, Y.-P. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis. 8, e2805 (2017).
Levene, A. P. & Goldin, R. D. Physiological hepatic nuclear vacuolation—how long does it persist? Histopathology 56, 426–429 (2010).
Hamilton, P. W. et al. Digital pathology and image analysis in tissue biomarker research. Methods 70, 59–73 (2014).
Bartels, P. H. et al. Chromatin texture signatures in nuclei from prostate lesions. Anal. Quant. Cytol. Histol. 20, 407–416 (1998).
Orr, J. A. & Hamilton, P. W. Histone acetylation and chromatin pattern in cancer. A review. Anal. Quant. Cytol. Histol. 29, 17–31 (2007).
Ricci, M. A., Cosma, M. P. & Lakadamyali, M. Super resolution imaging of chromatin in pluripotency, differentiation, and reprogramming. Curr. Opin. Genet. Dev. 46, 186–193 (2017).
Felmlee, D. J., Grün, D. & Baumert, T. F. Zooming in on liver zonation. Hepatology 67, 784–787 (2018).
Wattacheril, J. et al. Differential intrahepatic phospholipid zonation in simple steatosis and nonalcoholic steatohepatitis. PLoS One 8, e57165 (2013).
Takahashi, Y. & Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 20, 15539–15548 (2014).
Aravinthan, A. et al. Vacuolation in hepatocyte nuclei is a marker of senescence. J. Clin. Pathol. 65, 557–560 (2012).
Chalasani, N. et al. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J. Hepatol. 48, 829–834 (2008).
Kochan, K. et al. Raman spectroscopy analysis of lipid droplets content, distribution and saturation level in non-alcoholic fatty liver disease in mice. J. Biophotonics 8, 597–609 (2015).
Wieckowska, A. et al. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 44, 27–33 (2006).
Wang, L. & Boyer, J. L. The maintenance and generation of membrane polarity in hepatocytes. Hepatology 39, 892–899 (2004).
Wakabayashi, Y., Dutt, P., Lippincott-Schwartz, J. & Arias, I. M. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc. Natl Acad. Sci. USA 102, 15087–15092 (2005).
Kipp, H., Pichetshote, N. & Arias, I. M. Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J. Biol. Chem. 276, 7218–7224 (2001).
Dzierlenga, A. L. & Cherrington, N. J. Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis. J. Biochem. Mol. Toxicol. 37, e22035 (2018).
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn 20, 273–297 (1995).
Retico, A. et al. Predictive models based on support vector machines: whole‐brain versus regional analysis of structural MRI in the Alzheimer’s disease. J. Neuroimaging 25, 552–563 (2015).
Luo, X. et al. On the mechanical behavior of the human biliary system. World J. Gastroenterol. 13, 1384–1392 (2007).
Marinelli, R. A., Tietz, P. S., Caride, A. J., Huang, B. Q. & LaRusso, N. F. Water transporting properties of hepatocyte basolateral and canalicular plasma membrane domains. J. Biol. Chem. 278, 43157–43162 (2003).
Ostrenko, O., Hampe, J. & Brusch, L. Wet-tip versus dry-tip regimes of osmotically driven fluid flow. Sci. Rep. 9, 4528 (2019).
Ho, K. J. Biliary electrolytes and enzymes in patients with and without gallstones. Dig. Dis. Sci. 41, 2409–2416 (1996).
Jansen, P. L. M. et al. The ascending pathophysiology of cholestatic liver disease. Hepatology 65, 722–738 (2017).
Pollock, G. & Minuk, G. Y. Diagnostic considerations for cholestatic liver disease. J. Gastroenterol. Hepatol. 32, 1303–1309 (2017).
Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).
Jørgensen, T., Yogesan, K., Tveter, K. J., Skjørten, F. & Danielsen, H. E. Nuclear texture analysis: a new prognostic tool in metastatic prostate cancer. Cytometry 24, 277–283 (1996).
Walther, T. C., Chung, J. & Farese, R. V. Jr. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017).
Chow, M. D., Lee, Y.-H. & Guo, G. L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol. Aspects Med. 56, 34–44 (2017).
Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2016).
Jahn, D. & Geier, A. Bile acids in NASH: pathophysiological driving force or innocent bystanders? Hepatology 67, 464–466 (2017).
Puri, P. et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67, 534–548 (2017).
Trauner, M., Meier, P. J. & Boyer, J. L. Molecular pathogenesis of cholestasis. N. Engl. J. Med. 339, 1217–1227 (1998).
Coleman, R., Iqbal, S., Godfrey, P. P. & Billington, D. Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem. J. 178, 201–208 (1979).
Jansen, P. L. M. Hydrodynamics of bile flow: lessons from computational modeling. Hepatology 67, 1624–1627 (2018).
Day, C. P. & James, O. F. Hepatic steatosis: innocent bystander or guilty party? Hepatology 27, 1463–1466 (1998).
Aranha, M. M. et al. Bile acid levels are increased in the liver of patients with steatohepatitis. Eur. J. Gastroenterol. Hepatol. 20, 519–525 (2008).
Chan, T. T. & Wong, V. W. S. In search of new biomarkers for nonalcoholic fatty liver disease. Clin. Liver Dis. 8, 19–23 (2016).
Ferslew, B. C. et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig. Dis. Sci. 60, 3318–3328 (2015).
Hardwick, R. N., Fisher, C. D., Canet, M. J., Scheffer, G. L. & Cherrington, N. J. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 39, 2395–2402 (2011).
Steinacher, D., Claudel, T. & Trauner, M. Therapeutic mechanisms of bile acids and nor-ursodeoxycholic acid in non-alcoholic fatty liver disease. Dig. Dis. Sci. 35, 282–287 (2017).
Donner, M. G. & Keppler, D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology 34, 351–359 (2001).
Menshykau, D. et al. Image-based modeling of kidney branching morphogenesis reveals GDNF-RET based Turing-type mechanism and pattern-modulating WNT11 feedback. Nat. Commun. 10, 239 (2019).
Amalou, H. & Wood, B. J. Biopsy and personalized medicine. Nat. Rev. Gastroenterol. Hepatol. 9, 683 (2012).
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics 610–621 (1973).
Doube, M. et al. BoneJ: Free and extensible bone image analysis in Image. J. Bone 47, 1076–1079 (2010).
Morales-Navarrete, H., Nonaka, H., Segovia-Miranda, F., Segovia-Miranda, F., Zerial, M. & Kalaidzidis, Y. Automatic recognition and characterization of different non-parenchymal cells in liver tissue. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) 536-540 (IEEE, Prague, 2016).
Allwein, E. L., Schapire, R. E. & Singer, Y. Reducing multiclass to binary: A unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Hu, J., Lü, S., Feng, S. & Long, M. Flow dynamics analyses of pathophysiological liver lobules using porous media theory. Acta Mech. Sin. 33, 823–832 (2017).
Debbaut, C. et al. A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion. Comput. Methods Biomech. Biomed. Engin. 17, 1295–1310 (2014).
Carman, P. C. Fluid flow through granular beds. Chem. Eng. Res. Des. 75, S32–S48 (1997).
Ahishali, E. et al. Electron microscopic findings in non-alcoholic fatty liver disease: is there a difference between hepatosteatosis and steatohepatitis? J. Gastroenterol. Hepatol. 25, 619–626 (2010).
Sabersky, R. H., Acosta, A. J., Hauptmann, E. G. & Gates, E. M. Fluid Flow: A First Course in Fluid Dynamics (Prentice Hall, 1999).
Csendes, A. et al. Pressure measurements in the biliary and pancreatic duct systems in controls and in patients with gallstones, previous cholecystectomy, or common bile duct stones. Gastroenterology 77, 1203–1210 (1979).
Carlson, E., Zukoski, C. F., Campbell, J. & Chvapil, M. Morphologic, biophysical, and biochemical consequences of ligation of the common biliary duct in the dog. Am. J. Pathol. 86, 301–320 (1977).
Fischer, S. et al. Ursodeoxycholic acid decreases viscosity and sedimentable fractions of gallbladder bile in patients with cholesterol gallstones. Eur. J. Gastroenterol. Hepatol. 16, 305–311 (2004).
Starruß, J., de Back, W., Brusch, L. & Deutsch, A. Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 30, 1331–1332 (2014).
Rademaker, H., Zwieniecki, M. A., Bohr, T. & Jensen, K. H. Sugar export limits size of conifer needles. Phys. Rev. E 95, 042402 (2017).
Piergiovanni, M. et al. Microcirculation in the murine liver: a computational fluid dynamic model based on 3D reconstruction from in vivo microscopy. J. Biomech. 63, 125–134 (2017).
Debbaut, C. et al. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis. J. Biomech. 134, 011003 (2012).
Lütjohann, D. et al. Influence of rifampin on serum markers of cholesterol and bile acid synthesis in men. Int. J. Clin. Pharmacol. Ther. 42, 307–313 (2004).
Acknowledgements
We are grateful to O. Ostrenko, J. Francisco Miquel Poblete and S. Nehring for fruitful discussions, and S. Bundschuh for helping setting up the multiphoton microscope. We thank the Center for Information Services and High Performance Computing (ZIH) of the TU Dresden for the generous provision of computing power. We would also like to thank the following Services and Facilities of the Max Planck Institute of Molecular Cell Biology and Genetics for their support: Light Microscopy Facility (LMF) and the Electron Microscopy Facility. This work was financially supported by the German Federal Ministry of Education and Research (BMBF) (LiSyM, grant no. 031L0038 to M.Z.; grant no. 031L0033 to L.B.; grant no. 031L0031 to J.H.; DYNAFLOW, grant no. 031L0082B to M.Z.; grant no. 031L008A to L.B.; and SYSBIO II, grant no. 031L0044 to M.Z.), European Research Council (ERC) (grant no. 695646 to M.Z.) and the Max Planck Society (MPG).
Author information
Authors and Affiliations
Contributions
F.S.-M., J.H. and M.Z. conceived the project. F.S.-M., V.M. and S.S. performed the immunofluorescence experiments and imaging. H.M.-N. and Y.K. developed the image analysis algorithms. F.S-M., V.M. and H.M.-N. performed the 3D tissue reconstructions. H.M-N. and F.S.-M. performed the data analysis and interpretation of the results. U.R. performed the electron microscopy. A.H., S.H., C.R., C.S and M.B. obtained the samples and characterized the patients. D.L. measured bile acids. M.K., F.R., Y.K. and L.B. conceived and developed the mathematical model. M.K and F.R. programmed and simulated the mathematical model and performed statistical analysis. M.K. and L.B. interpreted results and wrote the model description. F.S.-M., H.M.-N., M.K., Y.K., L.B., J.H. and M.Z. wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Joao Monteiro was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Immunofluorescence of human liver tissue.
a, Human liver sections were stained for glutathione synthetase (GS) to visualize CV and DAPI. Scale bar, 1,000 µm. Representative images from NC = 4 samples and eNASH = 5 samples. b, 2D analysis of liver lobule radius represented by box-plots (median values as red lines, 25th and 75th percentiles as blue bottom and top edges of the boxes, extreme data points by whiskers). NC = 4 samples, HO = 4 samples, STEA = 7 samples, eNASH = 5 samples. One-sided Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001. c–f, Liver sections (~100 µm thick) were stained for bile canaliculi (CD13), sinusoids (fibronectin), nucleus (DAPI), LDs (BODIPY) and cell border (LDLR), optically cleared with SeeDB and imaged at high resolution using multiphoton microscopy (0.3 µm x 0.3 µm x 0.3 µm per voxel). Orthogonal view of NC (c), HO (d), STEA (e) and eNASH (f). Scale bar, 50 µm. Representative images from NC = 5 samples, HO = 3 samples, STEA = 4 samples, eNASH = 4 samples.
Extended Data Fig. 2 Morphometric features of the nuclei.
a, Representative IF images of fixed human liver tissue sections stained with DAPI. Shown is a single-plane covering an entire CV–PV axis. Arrowhead indicates some examples of vacuolated nuclei. Representative images from NC = 5 samples, HO = 3 samples, STEA = 4 samples, eNASH = 4 samples. b,c, Quantitative characterization of hepatocytes nuclei with respect to the proportion of mono/binuclear cells (b) and ploidy (c). Only the four major populations (1 × 2n, 1 × 4n, 2 × 2n and 2 × 4n), which account for >90% of the hepatocytes, are shown. d, Definition of the regions within the liver lobule. The CV–PV axis was divided in 10 equidistant regions. Regions 1 and 10 are adjacent to the CV and PV, respectively. Quantitative characterization of hepatocytes nuclear elongation (e) and texture based on their DAPI intensity (see Methods for details): nuclear vacuolation (f), homogeneity (Angular Second Moment) (g), local homogeneity (inverse difference moment) (h), contrast (i) and entropy (j). NC = 5 samples, HO = 3 samples, STEA = 4 samples, eNASH = 4 samples. Spatially resolved quantification represented by median ± MAD per region and overall quantifications by box plots (median values as red lines, 25th and 75th percentiles as blue bottom and top edges of the boxes, extreme data points by whiskers). One-tailed Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 3 Mislocalization of DPPIV in pericentral hepatocytes in STEA and eNASH.
a–c, Representative confocal microscopy images of human liver sections stained for the apical markers BSEP (a), MRP2 (b) and DPPIV (c). Merged images of the apical markers, phalloidin and DAPI are shown in the right panels. Arrowhead indicates the lateral membrane. Scale bar, 10 µm. NC = 3 samples, STEA = 4 samples, eNASH = 4 samples were repeated independently with similar results. d,e, Large field images of a single-plane of liver tissue stained with DPPIV (d). Scale bar, 50 µm. Apical, basal and lateral membrane of the hepatocytes were segmented based on BSEP (not shown), DPPIV and phalloidin (not shown) in an area covering a radius of 125 µm around the CV and PV. DPPIV intensity was quantified and normalized to the area covered by the different sub-domains (e). NC = 3 samples, STEA = 4 samples, eNASH = 4 samples. Quantifications by box plots (median values as red lines, 25th and 75th percentiles as blue bottom and top edges of the boxes, extreme data points by whiskers). One-tailed Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 4 Structural and topological characterization of the sinusoidal network.
a, Representative IF images of fixed human liver tissue sections stained with fibronectin after CAAR. Shown is a maximum projection of a 30-µm z-stack covering an entire CV–PV axis. Representative images from NC = 5 samples, HO = 3 samples, STEA = 5 samples, eNASH = 3 samples. b–h, Quantification of the tissue volume fraction occupied by the sinusoids (b), radius (c), number of junctions (d), total length per unit tissue volume (e), fraction of connected network (f) connectivity density (g) and branches crossing regions (h) for the sinusoidal network along the CV–PV axis and overall. NC = 5 samples, HO = 3 samples, STEA = 5 samples, eNASH = 3 samples. Spatially resolved quantification represented by median ± MAD per region and overall quantifications by box plots (median values as red lines, 25th and 75th percentiles as blue bottom and top edges of the boxes, extreme data points by whiskers). Two-tailed Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 5 Geometric and topological variability of the BC network among liver lobules.
BC network was reconstructed from three CV-PV axes from different lobules for each patient. NC = 4 patients, HO = 3 patients STEA = 3 patients, eNASH = 3 patients. Quantification of the tissue volume fraction occupied by the BC, radius, total length per unit tissue volume and fraction of connected network (a–d) along the CV–PV axis and overall. Spatially resolved quantification represented by median ± MAD per region and overall quantifications by box plots (median values as red lines, 25th and 75th percentiles as blue bottom and top edges of the boxes, extreme data points by whiskers). Two-tailed Kruskal–Wallis test. *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 6 Estimates for a fraction of free lumen in total volume of a bile canaliculus.
a, Representative images of bile canaliculi for NC and eNASH liver tissue samples, used for making the estimates. Microvilli are well preserved. A red dashed line indicates lumen of a bile canaliculus. TJ, tight junction. NC = 3 samples, HO = 3 samples, STEA = 3 samples, eNASH = 3 samples. Scalebar, 500 nm. b, Estimation of fraction of free lumen by stereological point counting (the Cavalieri estimator). For each set of samples and each region (central / portal vein) a minimum of five EM images was used. NC = 3 samples, HO = 3 samples, STEA = 3 samples, eNASH = 3 samples, median ± MAD.
Extended Data Fig. 7 Profile of serum cholestatic and liver injury biomarkers as well as bile acids during disease progression.
a–j, The levels of bilirubin (a), GGT (b), AP (c), AST (d), ALT (e), BA precursors (cholesterol, 7α-hydroxycholesterol and 27-hydroxycholesterol) (f), individual (CA, CDCA) and total primary BAs (g), individual (DCA, LCA, UDCA) and total secondary BAs (h), total BAs (i) and ratio secondary to primary BAs (j) were measured in the serum of the subjects and represented in box plots (median values as red lines, 25th and 75th percentiles as blue bottom and top edges of the boxes, extreme data points by whiskers). NC = 22 samples, HO = 27 samples, STEA = 31 samples, eNASH = 24 samples. One-tailed Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001.
Extended Data Fig. 8 Scatter plots and regression analysis of measured liver biomarkers and bile acids.
a–g, Bilirubin (a), AP (b), total BAs (c), primary BAs (d), AST (e), ALT (f) and ratio secondary to primary BAs (g) measured in the serum versus the model-derived pericentral pressure in individual patients from all groups. Arrow indicates an outlier for primary BAs (h7252). NC = 6 samples, HO = 4 samples, STEA = 8 samples, eNASH = 7 samples. P values and Spearman correlation coefficient are indicated in the plot.
Supplementary information
Supplementary Tables
Supplementary Tables 1–3.
Supplementary Video 1
3D reconstruction of human liver tissue from NC samples. Central vein (light blue), portal vein (orange), bile canaliculus (green), sinusoids (magenta), lipid droplets (red), nuclei (random colours) and hepatocytes (random colours).
Supplementary Video 2
3D reconstruction of human liver tissue from eNASH samples. Central vein (light blue), portal vein (orange), bile canaliculus (green), sinusoids (magenta), lipid droplets (red), nuclei (random colours) and hepatocytes (random colours).
Supplementary Video 3
Representative pericentral and periportal hepatocytes from NC and eNASH liver tissue samples. Apical (green), basal (magenta) and lateral (grey) plasma membrane domains, nuclei (random grey shades) and lipid droplets (red).
Supplementary Video 4
Representative 3D reconstruction of the bile canaliculi (green) and the sinusoidal (magenta) networks from the pericentral zone in STEA.
Rights and permissions
About this article
Cite this article
Segovia-Miranda, F., Morales-Navarrete, H., Kücken, M. et al. Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nat Med 25, 1885–1893 (2019). https://doi.org/10.1038/s41591-019-0660-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41591-019-0660-7
This article is cited by
-
Immune cell-mediated features of non-alcoholic steatohepatitis
Nature Reviews Immunology (2022)
-
Multimodal NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver cells
Scientific Reports (2022)
-
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials
Drug Delivery and Translational Research (2022)
-
Emerging liver organoid platforms and technologies
Cell Regeneration (2021)
-
Normalization of γ-glutamyl transferase levels is associated with better metabolic control in individuals with nonalcoholic fatty liver disease
BMC Gastroenterology (2021)