Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vitro fertilization does not increase the incidence of de novo copy number alterations in fetal and placental lineages


Although chromosomal instability (CIN) is a common phenomenon in cleavage-stage embryogenesis following in vitro fertilization (IVF)1,2,3, its rate in naturally conceived human embryos is unknown. CIN leads to mosaic embryos that contain a combination of genetically normal and abnormal cells, and is significantly higher in in vitro-produced preimplantation embryos as compared to in vivo-conceived preimplantation embryos4. Even though embryos with CIN-derived complex aneuploidies may arrest between the cleavage and blastocyst stages of embryogenesis5,6, a high number of embryos containing abnormal cells can pass this strong selection barrier7,8. However, neither the prevalence nor extent of CIN during prenatal development and at birth, following IVF treatment, is well understood. Here we profiled the genomic landscape of fetal and placental tissues postpartum from both IVF and naturally conceived children, to investigate the prevalence and persistence of large genetic aberrations that probably arose from IVF-related CIN. We demonstrate that CIN is not preserved at later stages of prenatal development, and that de novo numerical aberrations or large structural DNA imbalances occur at similar rates in IVF and naturally conceived live-born neonates. Our findings affirm that human IVF treatment has no detrimental effect on the chromosomal constitution of fetal and placental lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Haplarithmisis reveals genetic mosaicism with parent-of-origin information.
Fig. 2: Mosaic de novo CNVs and overlap with placental transcriptome.
Fig. 3: Schematic representation of plausible occurrence and segregation of de novo CNVs into fetal or placental lineages found in this study.

Similar content being viewed by others

Data availability

All SNP array data generated in this study were deposited in the NCBI Gene Expression Omnibus under accession no. GSE93353.

Code availability

Custom code is available from the author upon reasonable request.


  1. Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15, 577–583 (2009).

    CAS  PubMed  Google Scholar 

  2. Chavez, S. L. et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat. Commun. 3, 1251 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Zamani Esteki, M. et al. Concurrent whole-genome haplotyping and copy-number profiling of single cells. Am. J. Hum. Genet. 96, 894–912 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsuiko, O. et al. Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos. Hum. Reprod. 32, 2348–2357 (2017).

    CAS  PubMed  Google Scholar 

  5. McCoy, R. C. et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 11, e1005601 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. McCoy, R. C. et al. Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science 348, 235–238 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fragouli, E. et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum. Reprod. 26, 480–490 (2011).

    CAS  PubMed  Google Scholar 

  8. Popovic, M. et al. Chromosomal mosaicism in human blastocysts: the ultimate challenge of preimplantation genetic testing? Hum. Reprod. 33, 1342–1354 (2018).

    CAS  PubMed  Google Scholar 

  9. Vanneste, E. et al. What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate. Hum. Reprod. 24, 2679–2682 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. van Echten-Arends, J. et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum. Reprod. Update 17, 620–627 (2011).

    PubMed  Google Scholar 

  11. Destouni, A. et al. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy. Genome Res. 26, 567–578 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ledbetter, D. H. Chaos in the embryo. Nat. Med. 15, 490–491 (2009).

    CAS  PubMed  Google Scholar 

  13. Kalousek, D. K. & Vekemans, M. Confined placental mosaicism. J. Med. Genet. 33, 529–533 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Biesecker, L. G. & Spinner, N. B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307–320 (2013).

    CAS  PubMed  Google Scholar 

  15. Santos, M. A. et al. The fate of the mosaic embryo: chromosomal constitution and development of day 4, 5 and 8 human embryos. Hum. Reprod. 25, 1916–1926 (2010).

    PubMed  Google Scholar 

  16. Greco, E., Minasi, M. G. & Fiorentino, F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N. Engl. J. Med. 373, 2089–2090 (2015).

    PubMed  Google Scholar 

  17. Dimitriadou, E. et al. Principles guiding embryo selection following genome-wide haplotyping of preimplantation embryos. Hum. Reprod. 32, 687–697 (2017).

    CAS  PubMed  Google Scholar 

  18. Bolton, H. et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. 7, 11165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, P. et al. An organismal CNV mutator phenotype restricted to early human development. Cell 168, 830–842 e837 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Voet, T. & Vermeesch, J. R. Mutational processes shaping the genome in early human embryos. Cell 168, 751–753 (2017).

    CAS  PubMed  Google Scholar 

  21. Merla, G., Brunetti-Pierri, N., Micale, L. & Fusco, C. Copy number variants at Williams–Beuren syndrome 7q11.23 region. Hum. Genet. 128, 3–26 (2010).

    CAS  PubMed  Google Scholar 

  22. Szafranski, P. et al. Structures and molecular mechanisms for common 15q13.3 microduplications involving CHRNA7: benign or pathological? Hum. Mutat. 31, 840–850 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. van Bon, B. W. et al. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J. Med. Genet. 46, 511–523 (2009).

    PubMed  PubMed Central  Google Scholar 

  24. Chow S.-C., Shao, J. & Wang, H. Sample Size Calculation in Clinical Research (Marcel Dekker, 2003).

  25. Kasak, L., Rull, K., Vaas, P., Teesalu, P. & Laan, M. Extensive load of somatic CNVs in the human placenta. Sci. Rep. 5, 8342 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Delhanty, J. D. et al. Detection of aneuploidy and chromosomal mosaicism in human embryos during preimplantation sex determination by fluorescent in situ hybridisation (FISH). Hum. Mol. Genet. 2, 1183–1185 (1993).

    CAS  PubMed  Google Scholar 

  27. Munne, S. et al. Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer. Am. J. Obstet. Gynecol. 172, 1191–1199 (1995), discussion 1199–1201.

    CAS  PubMed  Google Scholar 

  28. Ziebe, S. et al. FISH analysis for chromosomes 13, 16, 18, 21, 22, X and Y in all blastomeres of IVF pre-embryos from 144 randomly selected donated human oocytes and impact on pre-embryo morphology. Hum. Reprod. 18, 2575–2581 (2003).

    CAS  PubMed  Google Scholar 

  29. Baart, E. B. et al. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum. Reprod. 21, 223–233 (2006).

    CAS  PubMed  Google Scholar 

  30. Steptoe, P. C. & Edwards, R. G. Birth after the reimplantation of a human embryo. Lancet 2, 366 (1978).

    CAS  PubMed  Google Scholar 

  31. Angell, R. R., Aitken, R. J., van Look, P. F., Lumsden, M. A. & Templeton, A. A. Chromosome abnormalities in human embryos after in vitro fertilization. Nature 303, 336–338 (1983).

    CAS  PubMed  Google Scholar 

  32. Harper, J. C. et al. Mosaicism of autosomes and sex chromosomes in morphologically normal, monospermic preimplantation human embryos. Prenat. Diagn. 15, 41–49 (1995).

    CAS  PubMed  Google Scholar 

  33. Voet, T. et al. Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res. 41, 6119–6138 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dimitriadou, E., Zamani Esteki, M. & Vermeesch, J. R. in Methods in Molecular Biology (ed. Kroneis, T.) 197–219 (Springer, 2015).

  35. Destouni, A. et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M. Hum. Reprod. 33, 2302–2311 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, K. et al. PennCNV: an integrated hidden markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Colella, S. et al. QuantiSNP: an objective Bayes hidden-Markov model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 35, 2013–2025 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Munne, S. et al. Euploidy rates in donor egg cycles significantly differ between fertility centers. Hum. Reprod. 32, 743–749 (2017).

    CAS  PubMed  Google Scholar 

  39. Munne, S. et al. Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing. Fertil. Steril. 108, 62–71 e68 (2017).

    CAS  PubMed  Google Scholar 

  40. Sildver, K., Veerus, P. & Lang, K. Birth weight percentiles and factors associated with birth weight: a registry-based study in Estonia. Eesti Arst. 94, 465–470 (2015).

    Google Scholar 

  41. Sankilampi, U., Hannila, M. L., Saari, A., Gissler, M. & Dunkel, L. New population-based references for birth weight, length, and head circumference in singletons and twins from 23 to 43 gestation weeks. Ann. Med. 45, 446–454 (2013).

    PubMed  Google Scholar 

  42. Conlin, L. K. et al. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum. Mol. Genet. 19, 1263–1275 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nilsen, G. et al. Copynumber: efficient algorithms for single- and multi-track copy number segmentation. BMC Genomics 13, 591 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hulley, S. B, Cummings, S. R, Browner, W. S, Grady, D. G. & Newman, T. B. Designing Clinical Research (Lippincott Williams & Wilkins, 2015).

  45. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, 1988).

  46. Metsalu, T. et al. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta. Epigenetics 9, 1397–1409 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Reimand, J. et al. g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 44, W83–W89 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Spaepen, M., Angulo, A. F., Marynen, P. & Cassiman, J. J. Detection of bacterial and mycoplasma contamination in cell cultures by polymerase chain reaction. FEMS Microbiol. Lett. 78, 89–94 (1992).

    CAS  PubMed  Google Scholar 

Download references


We gratefully thank all families that participated in this study in Estonia and Finland. This research was funded by an institutional research grant from the Estonian Ministry of Education and Research (no. IUT34-16 to A.S.); Enterprise Estonia (grant no. EU48695 to A.S.); the Horizon 2020 innovation (WIDENLIFE) (grant no. EU692065 to A.K.); the European Union’s FP7 Marie Curie Industry-Academia Partnerships and Pathways (grant no. EU324509 to A.S.); the Helsinki University Hospital fund (to A.Tiitinen); the Faculty of Medicine, University of Helsinki fund (to N.K.-A.); the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program fund of Maastricht University Medical Centre (MUMC+) (to M.Z.E.); the Estonian Research Council (grant nos. IUT20-60 and IUT24-6); the European Union through the European Regional Development Fund Project (nos. 2014-2020.4.01.15-0012 GENTRANSMED and 2014-2020.4.01.16-0125 to R.M.); and KU Leuven funding (no. C1/018) and FWO grant (no. G.0392.14N to J.R.V. and T.Voet). We thank B. de Greef, A. van Montfoort and N. Davarzani for statistical consultations.

Author information

Authors and Affiliations



M.Z.E., A.K., T.Voet, J.R.V. and A.S. conceived the study and designed the experiments. M.Z.E., T.Viltrop, O.T., J.M., T.Voet, J.R.V. and A.S. analyzed and interpreted the data. T.Viltrop, O.T., A.Tiitinen, H.M., H.K., V.S.-A., A.-M.S., A.Tiirats, N.K.-A. and S.K. carried out sample collection. O.T. and M.Z.E. performed ddPCR assays. M.K. carried out RNA sequencing analysis. M.N., K.T., O.Z. and R.M. performed PennCNV and QuantiSNP analyses. M.Z.E. drafted the initial version of the manuscript. M.Z.E., T.Viltrop, M.K., A.K., T.Voet, J.R.V. and A.S. wrote and edited the manuscript. M.Z.E., T.Voet, J.R.V. and A.S. jointly supervised this study. All the authors read and approved the manuscript for submission.

Corresponding authors

Correspondence to Masoud Zamani Esteki, Thierry Voet, Joris Robert Vermeesch or Andres Salumets.

Ethics declarations

Competing interests

M.Z.E., J.R.V. and T.Voet are co-inventors on patent application ZL913096-PCT/EP2014/068315-WO/2015/028576, ‘Haplotyping and copy-number typing using polymorphic variant allelic frequencies’.

Additional information

Peer review information Brett Benedetti was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Haplarithmisis revealed maternal and fetal contributions to placental DNA samples.

We show density of paternal (in blue) and maternal (in red) distances computed from paternal and maternal haplarithms, respectively, of the placenta and cord blood samples of P154, P109, P162 and P116 (see also Fig. 1b and Source Data).

Extended Data Fig. 2 The mosaic partial trisomies are not preserved across the P172 placenta.

The mosaic partial trisomies (purple arrows) on Chr6, Chr9 and Chr21 are only present in one biopsy (Biopsy I) out of all the spatially different biopsies of P172 placenta.

Extended Data Fig. 3 The full Chr 2 mosaic trisomy is persistently present across the P106 placenta.

The full Chr 2 mosaic trisomy (purple arrows) is persistently present in all the spatially different biopsies of P106 placenta.

Extended Data Fig. 4 Placenta CNV heterogeneity. We analyzed DNA samples from spatially distinct biopsies across the placentas.

a, the de novo non-mosaic CNVs were consistently present in all the biopsies (P153 and P091). b, the mosaic CNVs were present in one biopsy (P080 and P070), indicating placental mosaic CNV heterogeneity (see also Extended Data Fig. 2 and Source Data).

Extended Data Fig. 5 Determining fetal and maternal compartments in placenta DNA-samples using haplarithmisis.

We performed an in silico simulation by combining genotypes of the child and the mother with different proportions (from 1%Mother : 99%Child to 99%Mother : 1%Child) and deduced haplarithm profiles for each of these combinations, representing fetal and maternal compartments in placenta DNA samples (see also Source Data).

Extended Data Fig. 6 Proof-of-concept assay for the detection of mosaic aberrations using droplet digital PCR.

We mixed up a DNA sample from a trisomy 21 (copy number, CN=3) cell line with a DNA sample derived from a normal diploid cell line (CN=2) at different ratios, creating admixture series of DNA samples with 100%, 75%, 50%, 25%, 10–15% and 0% of abnormal alleles. Mosaic DNA samples were normalized to the number of fully diploid control (i.e. 0% abnormal). Each circle and error bar indicate mean and standard deviation, respectively, of four independent measurements.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani Esteki, M., Viltrop, T., Tšuiko, O. et al. In vitro fertilization does not increase the incidence of de novo copy number alterations in fetal and placental lineages. Nat Med 25, 1699–1705 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing