Ethical development of stem-cell-based interventions


The process of developing new and complex stem-cell-based therapeutics is incremental and requires decades of sustained collaboration among different stakeholders. In this Perspective, we address key ethical and policy challenges confronting the clinical translation of stem-cell-based interventions (SCBIs), including premature diffusion of SCBIs to clinical practice, assessment of risk in trials, obtaining valid informed consent for research participants, balanced and complete scientific reporting and public communications, regulation, and equitable access to treatment. We propose a way forward for translating these therapies with the above challenges in mind.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Thomas, E. D. A history of haemopoietic cell transplantation. Br. J. Haematol. 105, 330–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Thomas, E. D., Lochte, H. L. Jr., Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Burt, R. K. et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. J. Am. Med. Assoc. 299, 925–936 (2008).

    Article  CAS  Google Scholar 

  4. 4.

    Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    The Goldwater Institute. Everyone Deserves The Right To Try: Empowering The Terminally Ill To Take Control Of Their Treatment. Goldwater Institute (2014).

  6. 6.

    The ALS Association. Right to try official statement. ALSA (2018).

  7. 7.

    Patients for Stem Cells. Mission statement. Patients for Stem Cells (2012).

  8. 8.

    Palacios-González, C. & Medina-Arellano, M. J. Mitochondrial replacement techniques and Mexico’s rule of law: on the legality of the first maternal spindle transfer case. J. Law Biosci. 4, 50–69 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cyranoski, D. & Ledford, H. Genome-edited baby claim provokes international outcry. Nature 563, 607–608 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Bretzner, F., Gilbert, F., Baylis, F. & Brownstone, R. M. Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell 8, 468–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Konomi, K., Tobita, M., Kimura, K. & Sato, D. New Japanese initiatives on stem cell therapies. Cell Stem Cell 16, 350–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Marks, P. & Gottlieb, S. Balancing safety and innovation for cell-based regenerative medicine. N. Engl. J. Med. 378, 954–959 (2018).

    Article  PubMed  Google Scholar 

  13. 13.

    The Belmont Report: Ethical Principles and Guidelines for the Protection of Human Subjects of Research 5–6 (National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, 1979).

  14. 14.

    Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use: Guidance for Industry and Food and Drug Administration Staff 3–4 (US Department of Health and Human Services, Center for Biologics Evaluation and Research, 2017).

  15. 15.

    Knoepfler, P. S. From bench to FDA to bedside: US regulatory trends for new stem cell therapies. Adv. Drug Deliv. Rev. 82-83, 192–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Munsie, M. & Pera, M. Regulatory loophole enables unproven autologous cell therapies to thrive in Australia. Stem Cells Dev. 23 (Suppl 1), 34–38 (2014).

  17. 17.

    Therapeutic Goods (Human Cells, Tissues and Organs) Determination (Australian Government Department of Health, 2018).

  18. 18.

    Turner, L. & Knoepfler, P. Selling stem cells in the USA: assessing the direct-to-consumer industry. Cell Stem Cell 19, 154–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Turner, L. Direct-to-consumer marketing of stem cell interventions by Canadian businesses. Regen. Med. 13, 643–658 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Munsie, M. et al. Open for business: a comparative study of websites selling autologous stem cells in Australia and Japan. Regen. Med. 12, 777–790 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Tiwari, S. S. & Desai, P. N. Unproven stem cell therapies in india: regulatory challenges and proposed paths forward. Cell Stem Cell 23, 649–652 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Berger, I. et al. Global distribution of businesses marketing stem cell-based interventions. Cell Stem Cell 19, 158–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Dlouhy, B. J., Awe, O., Rao, R. C., Kirby, P. A. & Hitchon, P. W. Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: Case report. J. Neurosurg. Spine 21, 618–622 (2014).

    Article  PubMed  Google Scholar 

  24. 24.

    Perkins, K. M. et al. Notes from the field: infections after receipt of bacterially contaminated umbilical cord blood-derived stem cell products for other than hematopoietic or immunologic reconstitution - United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 67, 1397–1399 (2018).

    Article  PubMed  Google Scholar 

  25. 25.

    Berkowitz, A. L. et al. Glioproliferative lesion of the spinal cord as a complication of “stem-cell tourism”. N. Engl. J. Med. 375, 196–198 (2016).

    Article  Google Scholar 

  26. 26.

    Thirabanjasak, D., Tantiwongse, K. & Thorner, P. S. Angiomyeloproliferative lesions following autologous stem cell therapy. J. Am. Soc. Nephrol. 21, 1218–1222 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Amariglio, N. et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6, e1000029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Connolly, R., O’Brien, T. & Flaherty, G. Stem cell tourism–a web-based analysis of clinical services available to international travellers. Travel Med. Infect. Dis. 12(6 Pt B), 695–701 (2014).

    Article  PubMed  Google Scholar 

  29. 29.

    Lau, D. et al. Stem cell clinics online: the direct-to-consumer portrayal of stem cell medicine. Cell Stem Cell 3, 591–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Murdoch, B., Zarzeczny, A. & Caulfield, T. Exploiting science? A systematic analysis of complementary and alternative medicine clinic websites’ marketing of stem cell therapies. BMJ Open 8, e019414 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zarzeczny, A., Rachul, C., Nisbet, M. & Caulfield, T. Stem cell clinics in the news. Nat. Biotechnol. 28, 1243–1246 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Sipp, D. Challenges in the regulation of autologous stem cell interventions in the United States. Perspect. Biol. Med. 61, 25–41 (2018).

    Article  PubMed  Google Scholar 

  33. 33.

    Rettig, R.A., Jacobson, P.D., Farquhar, C.M. & Aubry, W.M. False Hope: Bone Marrow Transplantation for Breast Cancer (Oxford University Press, 2007).

  34. 34.

    Mello, M. M. & Brennan, T. A. The controversy over high-dose chemotherapy with autologous bone marrow transplant for breast cancer. Health Aff. (Millwood) 20, 101–117 (2001).

    Article  CAS  Google Scholar 

  35. 35.

    Stadtmauer, E. A. et al. Philadelphia Bone Marrow Transplant Group. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. N. Engl. J. Med. 342, 1069–1076 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Lanthier, N. Haemopoietic stem cell therapy in cirrhosis: the end of the story? Lancet Gastroenterol. Hepatol. 3, 3–5 (2018).

    Article  PubMed  Google Scholar 

  37. 37.

    Spahr, L. et al. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS One 8, e53719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Newsome, P. N. et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 3, 25–36 (2018).

    Article  PubMed  Google Scholar 

  39. 39.

    Turner, L., stem cells and ‘pay-to-participate’ clinical studies. Regen. Med. 12, 705–719 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Snyder, J., Turner, L. & Crooks, V. A. Crowdfunding for unproven stem cell-based interventions. J. Am. Med. Assoc. 319, 1935–1936 (2018).

    Article  Google Scholar 

  41. 41.

    Wenner, D. M., Kimmelman, J. & London, A. J. Patient-funded trials: opportunity or liability? Cell Stem Cell 17, 135–137 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Emanuel, E. J., Joffe, S., Grady, C., Wendler, D. & Persad, G. Clinical research: Should patients pay to play? Sci. Transl. Med. 7, 298ps16 (2015).

    Article  PubMed  Google Scholar 

  43. 43.

    Sipp, D. Pay-to-participate funding schemes in human cell and tissue clinical studies. Regen. Med. 7, 105–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Guidelines for Stem Cell Research and Clinical Translation (ISSCR, 2016).

  45. 45.

    Weinfurt, K. P. Value of high-cost cancer care: a behavioral science perspective. J. Clin. Oncol. 25, 223–227 (2007).

    Article  PubMed  Google Scholar 

  46. 46.

    Kwon, B. K., Ghag, A., Dvorak, M. F., Tetzlaff, W. & Illes, J. Expectations of benefit and tolerance to risk of individuals with spinal cord injury regarding potential participation in clinical trials. J. Neurotrauma 29, 2727–2737 (2012).

    Article  PubMed  Google Scholar 

  47. 47.

    van Besien, K. et al. Allogeneic stem cell transplantation for sickle cell disease. A study of patients’ decisions. Bone Marrow Transplant. 28, 545–549 (2001).

    Article  PubMed  Google Scholar 

  48. 48.

    DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151–185 (2003).

    Article  PubMed  Google Scholar 

  49. 49.

    DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).

    Article  PubMed  Google Scholar 

  50. 50.

    Borlongan, C. V. Age of PISCES: stem-cell clinical trials in stroke. Lancet 388, 736–738 (2016).

    Article  PubMed  Google Scholar 

  51. 51.

    Kimmelman, J. Gene Transfer and the Ethics of First-in-Human Research. (Cambridge University Press, 2009).

  52. 52.

    London, A. J., Kimmelman, J. & Emborg, M. E. Research ethics. Beyond access vs. protection in trials of innovative therapies. Science 328, 829–830 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wilson, J. M. Medicine. A history lesson for stem cells. Science 324, 727–728 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Redmond, D. E. Jr. Cellular replacement therapy for Parkinson’s disease--where we are today? Neuroscientist 8, 457–488 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Kolata, G. Parkinson’s research is set back by failure of fetal cell implants. The New York Times A00001 (8th March 2001).

  56. 56.

    Wirth, E., Lebkowski, J. S. III & Lebacqz, K. Response to Frederic Bretzner et al. “Target populations for first-in-human embryonic stem cell research in spinal cord injury”.Cell Stem Cell 8, 476–478 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    British Medical Journal Publishing Group. The Nuremberg Code (1947). Br. Med. J. 313, 1448 (1996).

    Google Scholar 

  58. 58.

    World Medical Association. Declaration of Helsinki. World Med. J. 54, 122–125 (2008).

    Google Scholar 

  59. 59.

    Code of Federal Regulations. Title 45 Part 46: Protection of human subjects. (2017).

  60. 60.

    Quesenberry, P. J., Dooner, G., Dooner, M. & Abedi, M. Developmental biology: Ignoratio elenchi: red herrings in stem cell research. Science 308, 1121–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Kimmelman, J. & Henderson, V. Assessing risk/benefit for trials using preclinical evidence: a proposal. J. Med. Ethics 42, 50–53 (2016).

    Article  PubMed  Google Scholar 

  62. 62.

    Oransky, I. & Marcus, A. Harvard and the Brigham call for 31 retractions of cardiac stem cell research. STAT News (2018).

  63. 63.

    De Los Angeles, A. et al. Failure to replicate the STAP cell phenomenon. Nature 525, E6–E9 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Akyurekli, C. et al. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev. 11, 150–160 (2015).

    Article  CAS  Google Scholar 

  66. 66.

    Lalu, M.M. et al. Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. eLife 5, e17850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Kwon, B. K. et al. Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury - how much is enough? Exp. Neurol. 248, 30–44 (2013).

    Article  PubMed  Google Scholar 

  68. 68.

    Nigro, P. et al. Cell therapy for heart disease after 15 years: Unmet expectations. Pharmacol. Res. 127, 77–91 (2018).

    Article  PubMed  Google Scholar 

  69. 69.

    Anderson, A. J., Piltti, K. M., Hooshmand, M. J., Nishi, R. A. & Cummings, B. J. Preclinical Efficacy Failure of Human CNS-Derived Stem Cells for Use in the Pathway Study of Cervical Spinal Cord Injury. Stem Cell Rep. 8, 249–263 (2017).

    Article  Google Scholar 

  70. 70.

    StemCells, Inc. former management. Reaction from StemCells, Inc. to Two Papers in Stem Cell Reports on the Efficacy of Human NSCs in Mouse Models of Alzheimer’s Disease and Spinal Cord Injury. Stem Cell Rep. 8, 194–195 (2017).

    Article  Google Scholar 

  71. 71.

    Kimmelman, J. et al. New ISSCR guidelines: clinical translation of stem cell research. Lancet 387, 1979–1981 (2016).

    Article  PubMed  Google Scholar 

  72. 72.

    Stroke Therapy Academic Industry Roundtable (STAIR).Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30, 2752–2758 (1999).

    Article  PubMed  Google Scholar 

  73. 73.

    Ludolph, A. C. et al. Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotroph. Lateral Scler. 11, 38–45 (2010).

    Article  PubMed  Google Scholar 

  74. 74.

    Hunsberger, J. G. et al. Accelerating stem cell trials for Alzheimer’s disease. Lancet Neurol. 15, 219–230 (2016).

    Article  PubMed  Google Scholar 

  75. 75.

    Hey, S. P. & Kimmelman, J. The risk-escalation model: a principled design strategy for early-phase trials. Kennedy Inst. Ethics J. 24, 121–139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Boulis, N. M. et al. Translational stem cell therapy for amyotrophic lateral sclerosis. Nat. Rev. Neurol. 8, 172–176 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Boucher, A. A. et al. Long-term outcomes after allogeneic hematopoietic stem cell transplantation for metachromatic leukodystrophy: the largest single-institution cohort report. Orphanet J. Rare Dis. 10, 94 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Djulbegovic, B. et al. Larger effect sizes in nonrandomized studies are associated with higher rates of EMA licensing approval. J. Clin. Epidemiol. 98, 24–32 (2018).

    Article  PubMed  Google Scholar 

  79. 79.

    Glasziou, P., Chalmers, I., Rawlins, M. & McCulloch, P. When are randomised trials unnecessary? Picking signal from noise. Br. Med. J. 334, 349–351 (2007).

    Article  Google Scholar 

  80. 80.

    Ribeil, J.-A. et al. Gene therapy in a patient with sickle cell disease. N. Engl. J. Med. 376, 848–855 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Sessa, M. et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 388, 476–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Bryant, A. et al. Myasthenia Gravis Treated With Autologous Hematopoietic Stem Cell Transplantation. JAMA Neurol. 73, 652–658 (2016).

    Article  PubMed  Google Scholar 

  83. 83.

    Freeman, T. B. et al. Use of placebo surgery in controlled trials of a cellular-based therapy for Parkinson’s disease. N. Engl. J. Med. 341, 988–992 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Kaptchuk, T. J. et al. Sham device v inert pill: randomised controlled trial of two placebo treatments. Br. Med. J. 332, 391–397 (2006).

    Article  Google Scholar 

  85. 85.

    Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Perin, E. C. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. J. Am. Med. Assoc. 307, 1717–1726 (2012).

    Article  CAS  Google Scholar 

  87. 87.

    Cohen, P. D. et al. Sham neurosurgical procedures: the patients’ perspective. Lancet Neurol. 11, 1022 (2012).

    Article  PubMed  Google Scholar 

  88. 88.

    Frank, S., Kieburtz, K., Holloway, R. & Kim, S. Y. H. What is the risk of sham surgery in Parkinson disease clinical trials? A review of published reports. Neurology 65, 1101–1103 (2005).

    Article  PubMed  Google Scholar 

  89. 89.

    Heldman, A. W. et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. J. Am. Med. Assoc. 311, 62–73 (2014).

    Article  CAS  Google Scholar 

  90. 90.

    Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Liu, K. D. et al. Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Ann. Intensive Care 4, 22 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Martin, P. J. et al. Prochymal Improves Response Rates In Patients With Steroid-Refractory Acute Graft Versus Host Disease (SR-GVHD) Involving The Liver And Gut: Results Of A Randomized, Placebo-Controlled, Multicenter Phase III Trial In GVHD. Biol. Blood Marrow Transplant. 16, S169–S170 (2010).

    Article  Google Scholar 

  93. 93.

    Hey, S. P. & Kimmelman, J. The questionable use of unequal allocation in confirmatory trials. Neurology 82, 77–79 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Roberts, T. G. Jr. et al. Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials. J. Am. Med. Assoc. 292, 2130–2140 (2004).

    Article  CAS  Google Scholar 

  95. 95.

    Anderson, J. A. & Kimmelman, J. Are phase 1 trials therapeutic? Risk, ethics, and division of labor. Bioethics 28, 138–146 (2014).

    Article  PubMed  Google Scholar 

  96. 96.

    Li, M. D., Atkins, H. & Bubela, T. The global landscape of stem cell clinical trials. Regen. Med. 9, 27–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. 97.

    Sulmasy, D. P. et al. The culture of faith and hope: patients’ justifications for their high estimations of expected therapeutic benefit when enrolling in early phase oncology trials. Cancer 116, 3702–3711 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Rasiel, E. B., Weinfurt, K. P. & Schulman, K. A. Can prospect theory explain risk-seeking behavior by terminally ill patients? Med. Decis. Mak. 25, 609–613 (2005).

    Article  Google Scholar 

  99. 99.

    Appelbaum, P. S., Roth, L. H. & Lidz, C. The therapeutic misconception: informed consent in psychiatric research. Int. J. Law Psychiatry 5, 319–329 (1982).

    Article  CAS  PubMed  Google Scholar 

  100. 100.

    Horng, S. & Grady, C. Misunderstanding in clinical research: distinguishing therapeutic misconception, therapeutic misestimation, and therapeutic optimism. IRB 25, 11–16 (2003).

    Article  PubMed  Google Scholar 

  101. 101.

    Henderson, G. E. et al. Uncertain benefit: investigators’ views and communications in early phase gene transfer trials. Mol. Ther. 10, 225–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. 102.

    Henderson, G. E. et al. Therapeutic misconception in early phase gene transfer trials. Soc. Sci. Med. 62, 239–253 (2006).

    Article  PubMed  Google Scholar 

  103. 103.

    Goel, A. Stem cell therapy in spinal cord injury: Hollow promise or promising science? J. Craniovertebr. Junction Spine 7, 121–126 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Fan, X., Wang, J.-Z., Lin, X.-M. & Zhang, L. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety. Neural Regen. Res. 12, 815–825 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Scott, C. T., DeRouen, M. C. & Crawley, L. M. The language of hope: therapeutic intent in stem-cell clinical trials. AJOB Prim. Res. 1, 4–11 (2010).

    Article  Google Scholar 

  106. 106.

    Kimmelman, J. & Levenstadt, A. Elements of style: consent form language and the therapeutic misconception in phase 1 gene transfer trials. Hum. Gene Ther. 16, 502–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. 107.

    Fung, M., Yuan, Y., Atkins, H., Shi, Q. & Bubela, T. Responsible translation of stem cell research: an assessment of clinical trial registration and publications. Stem Cell Rep. 8, 1190–1201 (2017).

    Article  Google Scholar 

  108. 108.

    Clinical Trials Registration and Results Information Submission 42 CFR 11 (US Department of Health and Human Services, 2016).

  109. 109.

    Checklist for Evaluating Whether a Clinical Trial or Study is an Applicable Clinical Trial (ACT) Under 42 CFR 11.22(b) for Clinical Trials Initiated on or After January 18, 2017 (27th June 2018) (, accessed 21 March 2019).

  110. 110.

    Nowbar, A. N. et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. Br. Med. J. 348, g2688 (2014).

    Article  Google Scholar 

  111. 111.

    Fisher, S. A., Doree, C., Mathur, A. & Martin-Rendon, E. Meta-analysis of cell therapy trials for patients with heart failure. Circ. Res. 116, 1361–1377 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. 112.

    Balolong, E., Lee, S., Nemeno, J. G. & Lee, J. I. Are they really stem cells? Scrutinizing the identity of cells and the quality of reporting in the use of adipose tissue-derived stem cells. Stem Cells Int. 2016, 2302430 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. 113.

    Kamenova, K. & Caulfield, T. Stem cell hype: media portrayal of therapy translation. Sci. Transl. Med. 7, 278ps4 (2015).

    Article  PubMed  Google Scholar 

  114. 114.

    Jaklevic, M. C. In need of scrutiny: Misleading stem cell claims by academic medical centers. (2017).

  115. 115.

    Caulfield, T., Sipp, D., Murry, C. E., Daley, G. Q. & Kimmelman, J. SCIENTIFIC COMMUNITY. Confronting stem cell hype. Science 352, 776–777 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. 116.

    Schwartz, L. M., Woloshin, S., Andrews, A. & Stukel, T. A. Influence of medical journal press releases on the quality of associated newspaper coverage: retrospective cohort study. Br. Med. J. 344, d8164 (2012).

    Article  Google Scholar 

  117. 117.

    Sumner, P. et al. The association between exaggeration in health related science news and academic press releases: retrospective observational study. Br. Med. J. 349, g7015 (2014).

    Article  Google Scholar 

  118. 118.

    Nisbet, M. C. Public opinion about stem cell research and human cloning. Public Opin. Q. 68, 131–154 (2004).

    Article  Google Scholar 

  119. 119.

    Carpenter, D. Reputation and Power: Organizational Image and Pharmaceutical Regulation at the FDA (Princeton University Press, 2010).

  120. 120.

    Carpenter, D. Confidence Games: How Does Regulation Constitute Markets? in Government and Markets (eds. Balleisen, E. & Moss, D.) 164–190 (Cambridge University Press, 2009).

  121. 121.

    Rathi, V. K., Krumholz, H. M., Masoudi, F. A. & Ross, J. S. Characteristics of clinical studies conducted over the total product life cycle of high-risk therapeutic medical devices receiving FDA premarket approval in 2010 and 2011. J. Am. Med. Assoc. 314, 604–612 (2015).

    Article  CAS  Google Scholar 

  122. 122.

    Fain, K., Daubresse, M. & Alexander, G. C. The Food and Drug Administration Amendments Act and postmarketing commitments. J. Am. Med. Assoc. 310, 202–204 (2013).

    Article  CAS  Google Scholar 

  123. 123.

    Pease, A. M. et al. Postapproval studies of drugs initially approved by the FDA on the basis of limited evidence: systematic review. Br. Med. J. 357, j1680 (2017).

    Article  Google Scholar 

  124. 124.

    Naci, H., Smalley, K. R. & Kesselheim, A. S. Characteristics of preapproval and postapproval studies for drugs granted accelerated approval by the US Food and Drug Administration. J. Am. Med. Assoc. 318, 626–636 (2017).

    Article  Google Scholar 

  125. 125.

    Okada, K., Sato, Y., Sugiyama, D. & Sawa, Y. Establishment of the national consortium for regenerative medicine and national regenerative medicine database in Japan. Clin. Ther. 40, 1076–1083 (2018).

    Article  PubMed  Google Scholar 

  126. 126.

    Long Term Follow-Up After Administration of Human Gene Therapy Products: Draft Guidance for Industry (US Department of Health and Human Services, Center for Biologics Evaluation and Research, 2018).

  127. 127.

    Guidance for Industry: Gene Therapy Clinical Trials – Observing Subjects for Delayed Adverse Events (US Department of Health and Human Services, Center for Biologics Evaluation and Research, 2006).

  128. 128.

    Cyranoski, D. ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature 557, 619–620 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. 129.

    Servick, K. Under 21st Century Cures legislation, stem cell advocates expect regulatory shortcuts. Science (2016).

  130. 130.

    Expedited Programs for Regenerative Medicine Therapies for Serious Conditions: Guidance for Industry (US Department of Health and Human Services, Center for Biologics Evaluation and Research, 2019).

  131. 131.

    Caplan, A. I. & West, M. D. Progressive approval: a proposal for a new regulatory pathway for regenerative medicine. Stem Cells Transl. Med. 3, 560–563 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Hwang, T. J. et al. Efficacy, safety, and regulatory approval of Food and Drug Administration-designated breakthrough and nonbreakthrough cancer medicines. J. Clin. Oncol. 36, 1805–1812 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. 133.

    Downing, N. S. et al. Postmarket Safety Events Among Novel Therapeutics Approved by the US Food and Drug Administration Between 2001 and 2010. J. Am. Med. Assoc. 317, 1854–1863 (2017).

    Article  Google Scholar 

  134. 134.

    London, A. J. & Kimmelman, J. Accelerated Drug Approval and Health Inequality. JAMA Intern. Med. 176, 883–884 (2016).

    Article  PubMed  Google Scholar 

  135. 135.

    Nichols, K. & Galipeau, J. Speed versus safety for cell therapy. The Translational Scientist (2016).

  136. 136.

    ISSCR Opposes the REGROW Act. ISSCR (2016).

  137. 137.

    Gratwohl, A. et al. Hematopoietic stem cell transplantation: a global perspective. J. Am. Med. Assoc. 303, 1617–1624 (2010).

    Article  CAS  Google Scholar 

  138. 138.

    Gratwohl, A. et al. One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2, e91–e100 (2015).

    Article  PubMed  Google Scholar 

  139. 139.

    Majhail, N. S., Nayyar, S., Santibañez, M. E., Murphy, E. A. & Denzen, E. M. Racial disparities in hematopoietic cell transplantation in the United States. Bone Marrow Transplant. 47, 1385–1390 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. 140.

    Faden, R. R. et al. Public stem cell banks: considerations of justice in stem cell research and therapy. Hastings Cent. Rep. 33, 13–27 (2003).

    Article  PubMed  Google Scholar 

  141. 141.

    Ballen, K. K. et al. Racial and ethnic composition of volunteer cord blood donors: comparison with volunteer unrelated marrow donors. Transfus. (Paris) 42, 1279–1284 (2002).

    Article  Google Scholar 

  142. 142.

    Kite’s YescartaTM (Axicabtagene Ciloleucel) Becomes First CAR T Therapy Approved by the FDA for the Treatment of Adult Patients With Relapsed or Refractory Large B-Cell Lymphoma After Two or More Lines of Systemic Therapy. Gilead Sciences (2017).

  143. 143.

    Mukherjee, S. Is $475,000 Too High a Price for Novartis’s ‘Historic’ Cancer Gene Therapy? Fortune (2017).

  144. 144.

    Tirrell, M. Spark Therapeutics’ Luxturna to cure rare blindness for $850,000. CNBC (2018).

  145. 145.

    Ylä-Herttuala, S. Glybera’s second act: the curtain rises on the high cost of therapy. Mol. Ther. 23, 217–218 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Lin, J.K. et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Relapsed or Refractory Pediatric B-Cell Acute Lymphoblastic Leukemia. J. Clin. Oncol. 36, 3192–3202 (2018).

    CAS  Google Scholar 

  147. 147.

    Hillman, A. L. et al. Avoiding bias in the conduct and reporting of cost-effectiveness research sponsored by pharmaceutical companies. N. Engl. J. Med. 324, 1362–1365 (1991).

    Article  CAS  PubMed  Google Scholar 

  148. 148.

    Cossu, G. et al. Lancet Commission: Stem cells and regenerative medicine. Lancet 391, 883–910 (2018).

    Article  PubMed  Google Scholar 

  149. 149.

    Hettle, R. et al. Exploring the assessment and appraisal of regenerative medicines and cell therapy products. (CRD and CHE Technology Assessment Group, University of York, 2015).

  150. 150.

    Cosh, E., Girling, A., Lilford, R., McAteer, H. & Young, T. Investing in new medical technologies: A decision framework. J. Commer. Biotechnol. 13, 263–271 (2007).

    Article  Google Scholar 

  151. 151.

    Bubela, T. & McCabe, C. Value-engineered translation for regenerative medicine: meeting the needs of health systems. Stem Cells Dev. 22 (Suppl 1), 89–93 (2013).

  152. 152.

    Contopoulos-Ioannidis, D. G., Alexiou, G. A., Gouvias, T. C. & Ioannidis, J. P. Medicine. Life cycle of translational research for medical interventions. Science 321, 1298–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. 153.

    Nelson, A. L., Dhimolea, E. & Reichert, J. M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov. 9, 767–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. 154.

    Lu, D. R. et al. Stage I clinical trial of gene therapy for hemophilia B. Sci. China B 36, 1342–1351 (1993).

    CAS  PubMed  Google Scholar 

  155. 155.

    Machin, N., Ragni, M. V. & Smith, K. J. Gene therapy in hemophilia A: a cost-effectiveness analysis. Blood Adv. 2, 1792–1798 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Peters, R. & Harris, T. Advances and innovations in haemophilia treatment. Nat. Rev. Drug Discov. 17, 493–508 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. 157.

    Sipp, D., Robey, P. G. & Turner, L. Clear up this stem-cell mess. Nature 561, 455–457 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. 158.

    Jordan, C. T. Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 4, 203–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Prockop, D. J. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol. Ther. 17, 939–946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Ährlund-Richter, L. et al. Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell 4, 20–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. 161.

    Kalladka, D. et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet 388, 787–796 (2016).

    Article  PubMed  Google Scholar 

  162. 162.

    Kimmelman, J. et al. Risk of surgical delivery to deep nuclei: a meta-analysis. Mov. Disord. 26, 1415–1421 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Fukuda, T. et al. Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood 102, 827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. 164.

    Clevers, H. Fetal tissue research is essential for scientific discovery and improving health. STAT News (2017).

  165. 165.

    Zhang, J. Y. Lost in translation? Accountability and governance of clinical stem cell research in China. Regen. Med. 12, 647–656 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. 166.

    Kim, S.-H. The Politics of Human Embryonic Stem Cell Research in South Korea: Contesting National Sociotechnical Imaginaries. Sci. Cult. 23, 293–319 (2014).

    Article  CAS  Google Scholar 

  167. 167.

    Almeida-Porada, G., Atala, A. & Porada, C. D. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. Mol. Ther. Methods Clin. Dev. 5, 16020 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Hyun, I., Wilkerson, A. & Johnston, J. Embryology policy: Revisit the 14-day rule. Nature 533, 169–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. 169.

    Aach, J., Lunshof, J., Iyer, E. & Church, G. M. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife 6, e20674 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Doerflinger, R. M. The ethics of funding embryonic stem cell research: a Catholic viewpoint. Kennedy Inst. Ethics J. 9, 137–150 (1999).

    Article  PubMed  Google Scholar 

  171. 171.

    Darnovsky, M. A slippery slope to human germline modification. Nature 499, 127 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. 172.

    Heneghan, C. et al. Lack of evidence for interventions offered in UK fertility centres. Br. Med. J. 355, i6295 (2016).

    Article  Google Scholar 

  173. 173.

    Zoon, K. C. Letter to Sponsors / Researchers - Human Cells Used in Therapy Involving the Transfer of Genetic Material By Means Other Than the Union of Gamete Nuclei. FDA Center for Biologics Evaluation and Research (2001).

  174. 174.

    Committee on the Ethical and Social Policy Considerations of Novel Techniques for Prevention of Maternal Transmission of Mitochondrial DNA Diseases, Board on Health Sciences Policy, Institute of Medicine & National Academies of Sciences, Engineering, and Medicine. Mitochondrial Replacement Techniques: Ethical, Social, and Policy Considerations. (National Academies Press (US), 2016).

  175. 175.

    Cohen, I. G. & Adashi, E. Y. Preventing Mitochondrial DNA Diseases: One Step Forward, Two Steps Back. J. Am. Med. Assoc. 316, 273–274 (2016).

    Article  Google Scholar 

  176. 176.

    Vogel, G. United Kingdom gives green light for mitochondrial replacement technique. Science (2016).

  177. 177.

    Cohen, I. G., Savulescu, J. & Adashi, E. Y. Medicine. Transatlantic lessons in regulation of mitochondrial replacement therapy. Science 348, 178–180 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. 178.

    Ishii, T. & Hibino, Y. Mitochondrial manipulation in fertility clinics: Regulation and responsibility. Reprod. Biomed. Soc. Online 5, 93–109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Patient Handbook on Stem Cell Therapies (ISSCR, 2008).

  180. 180.

    The Australian Stem Cell Handbook (The National Stem Cell Foundation of Australia & Stem Cells Australia, 2015).

  181. 181.

    Stem Cell Education: Educational Resources & Teaching Tools (EuroStemCell, 2018);

  182. 182.

    Report and Recommendations of the Workgroup to Study Regenerative and Stem Cell Therapy Practices (Federation of State Medical Boards, 2018).

  183. 183.

    NIH Guidance on Informed Consent for Gene Transfer Research (NIH Office of Biotechnology Activities, 2004).

  184. 184.

    Victory, J. Journalists: 9 tips to combat stem cell hype in your news stories. (2016).

  185. 185.

    Knoepfler, P. The Niche: Knoepfler Lab Stem Cell Blog (accessed 23 October 2018);

  186. 186.

    Warning Letters (US FDA, accessed 23 October 2018);

  187. 187.

    Sipp, D. et al. Marketing of unproven stem cell–based interventions: A call to action. Sci. Transl. Med. 9, eaag0426 (2017).

    Article  PubMed  Google Scholar 

Download references


We thank D. Sipp for helpful feedback on a draft of this manuscript; faults remain our own. We acknowledge the contributions of many scholars whose work we were unable to cite. This work was funded by CIHR grant PJT-148726.

Author information



Corresponding author

Correspondence to Jonathan Kimmelman.

Ethics declarations

Competing interests

J.K. serves on a Data and Safety Monitoring Board in a remunerative capacity for Ultragenyx Inc. The trial involves a gene therapy (not a stem-cell-based intervention). Compensation is <10K USD/year.

Additional information

Editor recognition: Hannah Stower was the primary editor on this Perspective and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

MacPherson, A., Kimmelman, J. Ethical development of stem-cell-based interventions. Nat Med 25, 1037–1044 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing