Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spinal cord repair: advances in biology and technology

Abstract

Individuals with spinal cord injury (SCI) can face decades with permanent disabilities. Advances in clinical management have decreased morbidity and improved outcomes, but no randomized clinical trial has demonstrated the efficacy of a repair strategy for improving recovery from SCI. Here, we summarize recent advances in biological and engineering strategies to augment neuroplasticity and/or functional recovery in animal models of SCI that are pushing toward clinical translation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: SCI biology and spontaneous recovery mechanisms.
Fig. 2: Biological strategies and mechanisms for spinal cord repair.
Fig. 3: Engineering strategies to enable immediate and long-term recovery of motor functions.
Fig. 4: Engineering technologies to interface motor intentions with denervated body parts.

References

  1. 1.

    National Spinal Cord Injury Statistical Center. Spinal cord injury (SCI) facts and figures at a glance https://www.nscisc.uab.edu/Public/Facts%202016.pdf (2016).

  2. 2.

    Fehlings, M. G. et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope. Global Spine J. 7 Suppl, 84S–94S (2017).

    Google Scholar 

  3. 3.

    Anderson, K. D. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371–1383 (2004).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Fawcett, J. W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45, 190–205 (2007).

    CAS  PubMed  Google Scholar 

  5. 5.

    Sofroniew, M. V. Dissecting spinal cord regeneration. Nature 557, 343–350 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Göritz, C. et al. A pericyte origin of spinal cord scar tissue. Science 333, 238–242 (2011).

    PubMed  Google Scholar 

  7. 7.

    Zhu, Y. et al. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol. Dis. 74, 114–125 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 7231–7243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    O’Shea, T. M., Burda, J. E. & Sofroniew, M. V. Cell biology of spinal cord injury and repair. J. Clin. Invest. 127, 3259–3270 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tuszynski, M. H. & Steward, O. Concepts and methods for the study of axonal regeneration in the CNS. Neuron 74, 777–791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Murray, K. C. et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 16, 694–700 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bareyre, F. M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269–277 (2004).

    CAS  Google Scholar 

  15. 15.

    Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 69–74 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Takeoka, A., Vollenweider, I., Courtine, G. & Arber, S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 159, 1626–1639 (2014).

    CAS  Google Scholar 

  17. 17.

    Ballermann, M. & Fouad, K. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur. J. Neurosci. 23, 1988–1996 (2006).

    PubMed  Google Scholar 

  18. 18.

    Raineteau, O. & Schwab, M. E. Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–273 (2001).

    CAS  PubMed  Google Scholar 

  19. 19.

    Rosenzweig, E. S. et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat. Neurosci. 13, 1505–1510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Friedli, L. et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci. Transl. Med. 7, 302ra134 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Belhaj-Saïf, A. & Cheney, P. D. Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract. J. Neurophysiol. 83, 3147–3153 (2000).

    PubMed  Google Scholar 

  22. 22.

    Müllner, A. et al. Lamina-specific restoration of serotonergic projections after Nogo-A antibody treatment of spinal cord injury in rats. Eur. J. Neurosci. 27, 326–333 (2008).

    PubMed  Google Scholar 

  23. 23.

    Oudega, M. & Perez, M. A. Corticospinal reorganization after spinal cord injury. J. Physiol. (Lond.) 590, 3647–3663 (2012).

    CAS  Google Scholar 

  24. 24.

    Baker, S. N. & Perez, M. A. Reticulospinal contributions to gross hand function after human spinal cord injury. J. Neurosci. 37, 9778–9784 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hilton, B. J. et al. Re-establishment of cortical motor output maps and spontaneous functional recovery via spared dorsolaterally projecting corticospinal neurons after dorsal column spinal cord injury in adult mice. J. Neurosci. 36, 4080–4092 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hollis, E. R. II et al. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury. Nat. Neurosci. 19, 697–705 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Asboth, L. et al. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat. Neurosci. 21, 576–588 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ruder, L., Takeoka, A. & Arber, S. Long-distance descending spinal neurons ensure quadrupedal locomotor stability. Neuron 92, 1063–1078 (2016).

    CAS  PubMed  Google Scholar 

  29. 29.

    Chen, B. et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 174, 521–535 e513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kinoshita, M. et al. Genetic dissection of the circuit for hand dexterity in primates. Nature 487, 235–238 (2012).

    CAS  PubMed  Google Scholar 

  31. 31.

    Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Beauparlant, J. et al. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain 136, 3347–3361 (2013).

    PubMed  Google Scholar 

  33. 33.

    Jiang, Y. Q., Zaaimi, B. & Martin, J. H. Competition with primary sensory afferents drives remodeling of corticospinal axons in mature spinal motor circuits. J. Neurosci. 36, 193–203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Dietz, V. Behavior of spinal neurons deprived of supraspinal input. Nat. Rev. Neurol. 6, 167–174 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Edgerton, V. R., Tillakaratne, N. J., Bigbee, A. J., de Leon, R. D. & Roy, R. R. Plasticity of the spinal neural circuitry after injury. Annu. Rev. Neurosci. 27, 145–167 (2004).

    CAS  PubMed  Google Scholar 

  36. 36.

    Lovett-Barr, M. R. et al. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J. Neurosci. 32, 3591–3600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Navarrete-Opazo, A., Alcayaga, J., Sepúlveda, O., Rojas, E. & Astudillo, C. Repetitive intermittent hypoxia and locomotor training enhances walking function in incomplete spinal cord injury subjects: a randomized, triple-blind, placebo-controlled clinical trial. J. Neurotrauma 34, 1803–1812 (2017).

    PubMed  Google Scholar 

  38. 38.

    Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  Google Scholar 

  39. 39.

    Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kucukdereli, H. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc. Natl Acad. Sci. USA 108, E440–E449 (2011).

    CAS  PubMed  Google Scholar 

  41. 41.

    Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    CAS  PubMed  Google Scholar 

  42. 42.

    Allen, N. J. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410–414 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tyzack, G. E. et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun. 5, 4294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wang, D. & Fawcett, J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res. 349, 147–160 (2012).

    Google Scholar 

  45. 45.

    Schwab, M. E. & Strittmatter, S. M. Nogo limits neural plasticity and recovery from injury. Curr. Opin. Neurobiol. 27, 53–60 (2014).

    CAS  Google Scholar 

  46. 46.

    Bradbury, E. J. & McMahon, S. B. Spinal cord repair strategies: why do they work? Nat. Rev. Neurosci. 7, 644–653 (2006).

    CAS  PubMed  Google Scholar 

  47. 47.

    García-Alías, G., Barkhuysen, S., Buckle, M. & Fawcett, J. W. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat. Neurosci. 12, 1145–1151 (2009).

    Google Scholar 

  48. 48.

    Mironova, Y. A. & Giger, R. J. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends Neurosci. 36, 363–373 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Onishi, K., Hollis, E. & Zou, Y. Axon guidance and injury-lessons from Wnts and Wnt signaling. Curr. Opin. Neurobiol. 27, 232–240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Norenberg, M. D., Smith, J. & Marcillo, A. The pathology of human spinal cord injury: defining the problems. J. Neurotrauma 21, 429–440 (2004).

    Google Scholar 

  51. 51.

    Fleming, J. C. et al. The cellular inflammatory response in human spinal cords after injury. Brain 129, 3249–3269 (2006).

    PubMed  Google Scholar 

  52. 52.

    Park, K. K. et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–966 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Liu, K. et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 13, 1075–1081 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Sun, F. et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480, 372–375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437–451 (2016).

    CAS  Google Scholar 

  56. 56.

    Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Chandran, V. et al. A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89, 956–970 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Yoon, C. & Giger, R. J. Inside out: core network of transcription factors drives axon regeneration. Neuron 89, 881–884 (2016).

    CAS  PubMed  Google Scholar 

  59. 59.

    de Lima, S. et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc. Natl Acad. Sci. USA 109, 9149–9154 (2012).

    PubMed  Google Scholar 

  60. 60.

    Baldwin, K. T., Carbajal, K. S., Segal, B. M. & Giger, R. J. Neuroinflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration. Proc. Natl Acad. Sci. USA 112, 2581–2586 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Ozdinler, P. H. & Macklis, J. D. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat. Neurosci. 9, 1371–1381 (2006).

    PubMed  Google Scholar 

  62. 62.

    Bei, F. et al. Restoration of visual function by enhancing conduction in regenerated axons. Cell 164, 219–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Alto, L. T. et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat. Neurosci. 12, 1106–1113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Bonner, J. F. et al. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J. Neurosci. 31, 4675–4686 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Plantman, S. et al. Integrin-laminin interactions controlling neurite outgrowth from adult DRG neurons in vitro. Mol. Cell. Neurosci. 39, 50–62 (2008).

    CAS  PubMed  Google Scholar 

  67. 67.

    Edwards, T. J. & Hammarlund, M. Syndecan promotes axon regeneration by stabilizing growth cone migration. Cell Reports 8, 272–283 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Farhy Tselnicker, I., Boisvert, M. M. & Allen, N. J. The role of neuronal versus astrocyte-derived heparan sulfate proteoglycans in brain development and injury. Biochem. Soc. Trans. 42, 1263–1269 (2014).

    PubMed  Google Scholar 

  69. 69.

    Masu, M. Proteoglycans and axon guidance: a new relationship between old partners. J. Neurochem. 139 Suppl 2, 58–75 (2016).

    PubMed  Google Scholar 

  70. 70.

    Baier, H. & Bonhoeffer, F. Axon guidance by gradients of a target-derived component. Science 255, 472–475 (1992).

    CAS  PubMed  Google Scholar 

  71. 71.

    Horn, K. P., Busch, S. A., Hawthorne, A. L., van Rooijen, N. & Silver, J. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J. Neurosci. 28, 9330–9341 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Blesch, A. & Tuszynski, M. H. Transient growth factor delivery sustains regenerated axons after spinal cord injury. J. Neurosci. 27, 10535–10545 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Adams, K. L. & Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018).

    CAS  Google Scholar 

  74. 74.

    Windle, W. F., Clemente, C. D. & Chambers, W. W. Inhibition of formation of a glial barrier as a means of permitting a peripheral nerve to grow into the brain. J. Comp. Neurol. 96, 359–369 (1952).

    CAS  PubMed  Google Scholar 

  75. 75.

    Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Brosius Lutz, A. & Barres, B. A. Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev. Cell 28, 7–17 (2014).

    CAS  PubMed  Google Scholar 

  77. 77.

    Mason, C. A., Edmondson, J. C. & Hatten, M. E. The extending astroglial process: development of glial cell shape, the growing tip, and interactions with neurons. J. Neurosci. 8, 3124–3134 (1988).

    CAS  Google Scholar 

  78. 78.

    Raper, J. & Mason, C. Cellular strategies of axonal pathfinding. Cold Spring Harb. Perspect. Biol. 2, a001933 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Zukor, K. et al. Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J. Neurosci. 33, 15350–15361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Mokalled, M. H. et al. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354, 630–634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Richardson, P. M. & Issa, V. M. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984).

    CAS  Google Scholar 

  82. 82.

    Hutson, T. H. et al. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci. Transl. Med. 11, eaaw2064 (2019).

    CAS  PubMed  Google Scholar 

  83. 83.

    Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).

    CAS  PubMed  Google Scholar 

  84. 84.

    Pearse, D. D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616 (2004).

    CAS  PubMed  Google Scholar 

  85. 85.

    Williams, R. R., Henao, M., Pearse, D. D. & Bunge, M. B. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transplant. 24, 115–131 (2015).

    PubMed  Google Scholar 

  86. 86.

    Shih, C. H., Lacagnina, M., Leuer-Bisciotti, K. & Pröschel, C. Astroglial-derived periostin promotes axonal regeneration after spinal cord injury. J. Neurosci. 34, 2438–2443 (2014).

    CAS  Google Scholar 

  87. 87.

    Zhang, S., Alvarez, D. J., Sofroniew, M. V. & Deming, T. J. Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties. Biomacromolecules 16, 1331–1340 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Assinck, P., Duncan, G. J., Hilton, B. J., Plemel, J. R. & Tetzlaff, W. Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 20, 637–647 (2017).

    CAS  Google Scholar 

  89. 89.

    Anderson, K. D. et al. Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury. J. Neurotrauma 34, 2950–2963 (2017).

    PubMed  Google Scholar 

  90. 90.

    Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Lu, P., Jones, L. L., Snyder, E. Y. & Tuszynski, M. H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 181, 115–129 (2003).

    CAS  PubMed  Google Scholar 

  92. 92.

    Kadoya, K. et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat. Med. 22, 479–487 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Abematsu, M. et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J. Clin. Invest. 120, 3255–3266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Rosenzweig, E. S. et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat. Med. 24, 484–490 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Pivetta, C., Esposito, M. S., Sigrist, M. & Arber, S. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin. Cell 156, 537–548 (2014).

    CAS  PubMed  Google Scholar 

  96. 96.

    Winter, C. C. et al. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta Biomater. 38, 44–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Gao, M. et al. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Biomaterials 34, 1529–1536 (2013).

    CAS  PubMed  Google Scholar 

  98. 98.

    Elliott Donaghue, I., Tam, R., Sefton, M. V. & Shoichet, M. S. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J. Control. Release 190, 219–227 (2014).

    CAS  PubMed  Google Scholar 

  99. 99.

    O’Shea, T. M. et al. In Smart Materials for Tissue Engineering Applications (ed. Wang, Q.) 529–557 (Royal Society of Chemistry, 2017).

  100. 100.

    Grillner, S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006).

    CAS  PubMed  Google Scholar 

  101. 101.

    Kiehn, O. Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29, 279–306 (2006).

    CAS  PubMed  Google Scholar 

  102. 102.

    Bachmann, L. C. et al. Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats. Sci. Transl. Med. 5, 208ra146 (2013).

    PubMed  Google Scholar 

  103. 103.

    Radhakrishna, M. et al. Double-blind, placebo-controlled, randomized phase I/IIa study (safety and efficacy) with buspirone/levodopa/carbidopa (SpinalonTM) in subjects with complete AIS A or motor-complete AIS B spinal cord injury. Curr. Pharm. Des. 23, 1789–1804 (2017).

    CAS  PubMed  Google Scholar 

  104. 104.

    Gerasimenko, Y. P. et al. Noninvasive reactivation of motor descending control after paralysis. J. Neurotrauma 32, 1968–1980 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Wenger, N. et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat. Med. 22, 138–145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Grahn, P. J. et al. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin. Proc. 92, 544–554 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Angeli, C., Edgerton, V. R., Gerasimenko, Y. & Harkema, S. Reply: No dawn yet of a new age in spinal cord rehabilitation. Brain 138, e363 (2015).

    PubMed  Google Scholar 

  108. 108.

    Herman, R., He, J., D’Luzansky, S., Willis, W. & Dilli, S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 40, 65–68 (2002).

    CAS  PubMed  Google Scholar 

  109. 109.

    van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Danner, S. M. et al. Human spinal locomotor control is based on flexibly organized burst generators. Brain 138, 577–588 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).

    CAS  PubMed  Google Scholar 

  112. 112.

    Gill, M. L. et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 24, 1677–1682 (2018).

    CAS  PubMed  Google Scholar 

  113. 113.

    Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS  PubMed  Google Scholar 

  114. 114.

    Holinski, B. J. et al. Intraspinal microstimulation produces over-ground walking in anesthetized cats. J. Neural Eng. 13, 056016 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Zimmermann, J. B., Seki, K. & Jackson, A. Reanimating the arm and hand with intraspinal microstimulation. J. Neural Eng. 8, 054001 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Kasten, M. R., Sunshine, M. D., Secrist, E. S., Horner, P. J. & Moritz, C. T. Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury. J. Neural Eng. 10, 044001 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P. & Harkema, S. J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Lu, D. C. et al. Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients. Neurorehabil. Neural Repair 30, 951–962 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Phillips, A. A. et al. An autonomic neuroprosthesis: noninvasive electrical spinal cord stimulation restores autonomic cardiovascular function in individuals with spinal cord injury. J. Neurotrauma 35, 446–451 (2017).

    PubMed  Google Scholar 

  120. 120.

    Hachmann, J. T. et al. Electrical neuromodulation of the respiratory system after spinal cord injury. Mayo Clin. Proc. 92, 1401–1414 (2017).

    PubMed  Google Scholar 

  121. 121.

    Minassian, K., McKay, W. B., Binder, H. & Hofstoetter, U. S. Targeting lumbar spinal neural circuitry by epidural stimulation to restore motor function after spinal cord injury. Neurotherapeutics 13, 284–294 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Moraud, E. M. et al. Mechanisms underlying the neuromodulation of spinal circuits for correcting gait and balance deficits after spinal cord injury. Neuron 89, 814–828 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Capogrosso, M. et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. 33, 19326–19340 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Gaunt, R. A., Prochazka, A., Mushahwar, V. K., Guevremont, L. & Ellaway, P. H. Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses. J. Neurophysiol. 96, 2995–3005 (2006).

    CAS  PubMed  Google Scholar 

  125. 125.

    Barolat, G., Myklebust, J. B. & Wenninger, W. Enhancement of voluntary motor function following spinal cord stimulation—case study. Appl. Neurophysiol. 49, 307–314 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Nudo, R. J. & Masterton, R. B. Descending pathways to the spinal cord: a comparative study of 22 mammals. J. Comp. Neurol. 277, 53–79 (1988).

    CAS  PubMed  Google Scholar 

  127. 127.

    Minassian, K. et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord 42, 401–416 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Carhart, M. R., He, J., Herman, R., D’Luzansky, S. & Willis, W. T. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 32–42 (2004).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Tripodi, M., Stepien, A. E. & Arber, S. Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479, 61–66 (2011).

    CAS  PubMed  Google Scholar 

  131. 131.

    Levine, A. J. et al. Identification of a cellular node for motor control pathways. Nat. Neurosci. 17, 586–593 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21, 1728–1741 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Wenger, N. et al. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci. Transl. Med. 6, 255ra133 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Gilja, V. et al. Clinical translation of a high-performance neural prosthesis. Nat. Med. 21, 1142–1145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Jarosiewicz, B. et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci. Transl. Med. 7, 313ra179 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Ajiboye, A. B. et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389, 1821–1830 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Ethier, C., Oby, E. R., Bauman, M. J. & Miller, L. E. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Moritz, C. T., Perlmutter, S. I. & Fetz, E. E. Direct control of paralysed muscles by cortical neurons. Nature 456, 639–642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Flesher, S. N. et al. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8, 361ra141 (2016).

    PubMed  Google Scholar 

  143. 143.

    Bonizzato, M. et al. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat. Commun. 9, 3015 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Borton, D., Micera, S., Millán, JdelR. & Courtine, G. Personalized neuroprosthetics. Sci. Transl. Med. 5, 210rv2 (2013).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    CAS  Google Scholar 

  146. 146.

    Côté, M. P., Murray, M. & Lemay, M. A. Rehabilitation strategies after spinal cord injury: inquiry into the mechanisms of success and failure. J. Neurotrauma 34, 1841–1857 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Torres-Espín, A., Beaudry, E., Fenrich, K. & Fouad, K. Rehabilitative training in animal models of spinal cord injury. J. Neurotrauma 35, 1970–1985 (2018).

    PubMed  Google Scholar 

  148. 148.

    Carmel, J. B. & Martin, J. H. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function. Front. Integr. Neurosci. 8, 51 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Zareen, N. et al. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Exp. Neurol. 297, 179–189 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Tazoe, T. & Perez, M. A. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury. Arch. Phys. Med. Rehabil. 96, S145–S155 (2015).

    PubMed  Google Scholar 

  151. 151.

    Long, J., Federico, P. & Perez, M. A. A novel cortical target to enhance hand motor output in humans with spinal cord injury. Brain 140, 1619–1632 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Mishra, A. M., Pal, A., Gupta, D. & Carmel, J. B. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses. J. Physiol. (Lond.) 595, 6953–6968 (2017).

    CAS  Google Scholar 

  153. 153.

    Dixon, L., Ibrahim, M. M., Santora, D. & Knikou, M. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. J. Neurophysiol. 116, 904–916 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Jackson, A., Mavoori, J. & Fetz, E. E. Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444, 56–60 (2006).

    CAS  PubMed  Google Scholar 

  155. 155.

    Nishimura, Y., Perlmutter, S. I., Eaton, R. W. & Fetz, E. E. Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80, 1301–1309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Nishimura, Y., Perlmutter, S. I. & Fetz, E. E. Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front. Neural Circuits 7, 57 (2013).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Freund, P. et al. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol. 12, 873–881 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    McPherson, J. G., Miller, R. R. & Perlmutter, S. I. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. Proc. Natl Acad. Sci. USA 112, 12193–12198 (2015).

    CAS  PubMed  Google Scholar 

  160. 160.

    Harkema, S. J. Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res. Rev. 57, 255–264 (2008).

    PubMed  Google Scholar 

  161. 161.

    Rejc, E., Angeli, C. A., Atkinson, D. & Harkema, S. J. Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci. Rep. 7, 13476 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Gómez-Pinilla, F., Ying, Z., Roy, R. R., Hodgson, J. & Edgerton, V. R. Afferent input modulates neurotrophins and synaptic plasticity in the spinal cord. J. Neurophysiol. 92, 3423–3432 (2004).

    PubMed  Google Scholar 

  163. 163.

    Baraban, M., Koudelka, S. & Lyons, D. A. Ca2+ activity signatures of myelin sheath formation and growth in vivo. Nat. Neurosci. 21, 19–23 (2018).

    CAS  PubMed  Google Scholar 

  164. 164.

    López-Álvarez, V. M., Modol, L., Navarro, X. & Cobianchi, S. Early increasing-intensity treadmill exercise reduces neuropathic pain by preventing nociceptor collateral sprouting and disruption of chloride cotransporters homeostasis after peripheral nerve injury. Pain 156, 1812–1825 (2015).

    PubMed  Google Scholar 

  165. 165.

    Donati, A. R. et al. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci. Rep. 6, 30383 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Gorgey, A. S. Robotic exoskeletons: the current pros and cons. World J. Orthop. 9, 112–119 (2018).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Maier, I. C. et al. Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain 132, 1426–1440 (2009).

    PubMed  Google Scholar 

  168. 168.

    Fouad, K., Bennett, D. J., Vavrek, R. & Blesch, A. Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection. Front. Neurol. 4, 187 (2013).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Chen, K. et al. Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats. Exp. Neurol. 292, 135–144 (2017).

    CAS  PubMed  Google Scholar 

  170. 170.

    Overman, J. J. & Carmichael, S. T. Plasticity in the injured brain: more than molecules matter. Neuroscientist 20, 15–28 (2014).

    PubMed  Google Scholar 

  171. 171.

    Arber, S. & Costa, R. M. Connecting neuronal circuits for movement. Science 360, 1403–1404 (2018).

    CAS  PubMed  Google Scholar 

  172. 172.

    Rossignol, S., Dubuc, R. & Gossard, J. P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154 (2006).

    PubMed  Google Scholar 

  173. 173.

    Dominici, N. et al. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat. Med. 18, 1142–1147 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    World Health Organisation (WHO). International perspectives on spinal cord injury http://apps.who.int/iris/bitstream/handle/10665/94190/9789241564663_eng.pdf (2013).

Download references

Acknowledgements

The authors kindly thank J. B. Mignardot for drafting the figures. This work was supported by a Consolidator Grant from the European Research Council (ERC-2015-CoG HOW2WALKAGAIN 682999 to G.G.), the Swiss National Science Foundation including a bonus of Excellence (310030B_166674) and the National Center of Competence in Research (NCCR) Robotics (to G.C.), the US National Institutes of Health R01NS084030 (to M.S.), the Dr Miriam and Sheldon G. Adelson Medical Foundation (to M.S.) and Wings for Life (to G.C. and M.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grégoire Courtine.

Ethics declarations

Competing interests

G.C. holds various patents in relation to the reviewed work, and is a founder and shareholder of GTX medical, a company developing a therapy for spinal cord injury.

Additional information

Peer review information: Hannah Stower was the primary editor(s) on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Courtine, G., Sofroniew, M.V. Spinal cord repair: advances in biology and technology. Nat Med 25, 898–908 (2019). https://doi.org/10.1038/s41591-019-0475-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing