Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Principles of and strategies for germline gene therapy


Monogenic disorders occur at a high frequency in human populations and are commonly inherited through the germline. Unfortunately, once the mutation has been transmitted to a child, only limited treatment options are available in most cases. However, means of correcting disease-causing nuclear and mitochondrial DNA mutations in gametes or preimplantation embryos have now been developed and are commonly referred to as germline gene therapy (GGT). We will discuss these novel strategies and provide a path forward for safe, high-efficiency GGT that may provide a promising new paradigm for preventing the passage of deleterious genes from parent to child.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Embryo selection following PGD for families in which one parent carries an autosomal dominant mutation.
Fig. 2: Possible repair outcomes in embryos homozygous for a germline mutation in the MYBPC3 gene.
Fig. 3: Repair outcomes in embryos heterozygous for a germline mutation in the MYBPC3 gene41.


  1. 1.

    Genes and Human Disease (World Health Organization);

  2. 2.

    Cornu, T. I., Mussolino, C. & Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat. Med. 23, 415–423 (2017).

    CAS  Google Scholar 

  3. 3.

    Rossidis, A. C. et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat. Med. 24, 1513–1518 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Massaro, G. et al. Fetal gene therapy for neurodegenerative disease of infants. Nat. Med. 24, 1317–1323 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Genovese, P. et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235–240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Koch, L. Genetic engineering: in vivo genome editing — growing in strength. Nat. Rev. Genet. 17, 124 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Haworth, K. G., Peterson, C. W. & Kiem, H. P. CCR5-edited gene therapies for HIV cure: Closing the door to viral entry. Cytotherapy 19, 1325–1338 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cyranoski, D. First CRISPR babies: six questions that remain. Nature (2 December 2018).

  11. 11.

    Carlson, L. M. & Vora, N. L. Prenatal diagnosis: screening and diagnostic tools. Obstet. Gynecol. Clin. North Am. 44, 245–256 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Handyside, A. H., Kontogianni, E. H., Hardy, K. & Winston, R. M. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344, 768–770 (1990).

    CAS  PubMed  Google Scholar 

  13. 13.

    Lee, V. C. Y., Chow, J. F. C., Yeung, W. S. B. & Ho, P. C. Preimplantation genetic diagnosis for monogenic diseases. Best. Pract. Res. Clin. Obstet. Gynaecol. 44, 68–75 (2017).

    PubMed  Google Scholar 

  14. 14.

    2016 IVF Outcomes Per Egg Retrieval Cycle (Society for Assisted Reproductive Technology (SART), 2016);

  15. 15.

    Steffann, J., Jouannet, P., Bonnefont, J. P., Chneiweiss, H. & Frydman, N. Could failure in preimplantation genetic diagnosis justify editing the human embryo genome? Cell Stem Cell 22, 481–482 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Mitalipov, S., Amato, P., Parry, S. & Falk, M. J. Limitations of preimplantation genetic diagnosis for mitochondrial DNA diseases. Cell Rep. 7, 935–937 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wolf, D. P., Mitalipov, N. & Mitalipov, S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol. Med. 21, 68–76 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Tachibana, M. et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ma, H. et al. Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20, 112–119 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Craven, L. et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465, 82–85 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lee, H. S. et al. Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep. 1, 506–515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tachibana, M. et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627–631 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kang, E. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540, 270–275 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Paull, D. et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493, 632–637 (2013).

    CAS  PubMed  Google Scholar 

  25. 25.

    HFEA. HFEA statement on mitochondrial donation. (2017).

  26. 26.

    Alikani, M., Fauser, B. C. J., Garcia-Valesco, J. A., Simpson, J. L. & Johnson, M. H. First birth following spindle transfer for mitochondrial replacement therapy: hope and trepidation. Reprod. Biomed. Online 34, 333–336 (2017).

    PubMed  Google Scholar 

  27. 27.

    Adashi, E. Y. & Cohen, I. G. Preventing mitochondrial disease: a path forward. Obstet. Gynecol. 131, 553–556 (2018).

    PubMed  Google Scholar 

  28. 28.

    Wolf, D. P., Hayama, T. & Mitalipov, S. Mitochondrial genome inheritance and replacement in the human germline. EMBO J. 36, 2659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gammage, P. A. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24, 1691–1695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24, 1696–1700 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Reddy, P. et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161, 459–469 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Yusa, K. et al. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Suzuki, K. et al. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 15, 31–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    CAS  PubMed  Google Scholar 

  35. 35.

    Kowalczykowski, S. C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 7, a016410 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Spies, M. & Fishel, R. Mismatch repair during homologous and homeologous recombination. Cold Spring Harb. Perspect. Biol. 7, a022657 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR–Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Doudna, J. A. & Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Chen, J. M., Cooper, D. N., Chuzhanova, N., Ferec, C. & Patrinos, G. P. Gene conversion: mechanisms, evolution and human disease. Nat. Rev. Genet. 8, 762–775 (2007).

    CAS  PubMed  Google Scholar 

  41. 41.

    Ma, H. et al. Correction of a pathogenic gene mutation in human embryos. Nature 548, 413–419 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  PubMed  Google Scholar 

  43. 43.

    Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ma, H. et al. Ma et al. reply. Nature 560, E10–E23 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Egli, D. et al. Inter-homologue repair in fertilized human eggs? Nature 560, E5–E7 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Adikusuma, F. et al. Large deletions induced by Cas9 cleavage. Nature 560, E8–E9 (2018).

    CAS  PubMed  Google Scholar 

  48. 48.

    Matsoukas, I. G. Commentary: programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Front. Genet. 9, 21 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    CAS  PubMed  Google Scholar 

  52. 52.

    Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    CAS  Google Scholar 

  58. 58.

    Kim, D., Kim, S., Kim, S., Park, J. & Kim, J. S. Genome-wide target specificities of CRISPR–Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 26, 406–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Varga, T. & Aplan, P. D. Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst.) 4, 1038–1046 (2005).

    CAS  Google Scholar 

  61. 61.

    Yoshimi, K., Kaneko, T., Voigt, B. & Mashimo, T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform. Nat. Commun. 5, 4240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    CAS  Google Scholar 

  63. 63.

    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    CAS  Google Scholar 

  64. 64.

    Tang, L. et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol. Genet. Genom. 292, 525–533 (2017).

    CAS  Google Scholar 

  65. 65.

    Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363–372 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Tu, Z. et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci. Rep. 7, 42081 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Hashimoto, M., Yamashita, Y. & Takemoto, T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev. Biol. 418, 1–9 (2016).

    CAS  PubMed  Google Scholar 

  68. 68.

    Song, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 10548 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Wilde, J.J. et al. RAD51 enhances zygotic interhomolog repair. Preprint at (2018).

  70. 70.

    Chan, S. et al. Genome editing technologies and human germline genetic modification: the hinxton group consensus statement. Am. J. Bioeth. 15, 42–47 (2015).

    PubMed  Google Scholar 

  71. 71.

    Human Genome Editing: Science, Ethics, and Governance (The National Academies Press, 2017).

  72. 72.

    Ormond, K. E. et al. Human germline genome editing. Am. J. Hum. Genet. 101, 167–176 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Genome Editing and Human Reproduction: Social and Ethical Issues (Nuffield Council on Bioethics, 2018).

  74. 74.

    Lander, E. S. et al. Adopt a moratorium on heritable genome editing. Nature 567, 165–168 (2019).

    CAS  PubMed  Google Scholar 

  75. 75.

    Ishii, T. The ethics of creating genetically modified children using genome editing. Curr. Opin. Endocrinol. Diabetes Obes. 24, 418–423 (2017).

    PubMed  Google Scholar 

  76. 76.

    Cohen, J. An ‘epic scientific misadventure’: NIH head Francis Collins ponders fallout from CRISPR baby study. Science (30 November 2018).

  77. 77.

    Scheufele, D. A. et al. U.S. attitudes on human genome editing. Science 357, 553–554 (2017).

    CAS  PubMed  Google Scholar 

  78. 78.

    McCaughey, T. et al. A global social media survey of attitudes to human genome editing. Cell Stem Cell 18, 569–572 (2016).

    CAS  PubMed  Google Scholar 

  79. 79.

    Ishii, T. Reproductive medicine involving mitochondrial dna modification: evolution, legality, and ethics. EMJ Repro. Health 4, 88–99 (2018).

    Google Scholar 

  80. 80.

    O’Sullivan, B. P. & Freedman, S. D. Cystic fibrosis. Lancet 373, 1891–1904 (2009).

    PubMed  Google Scholar 

  81. 81.

    US National Library of Medicine. Tay–Sachs disease (2018).

  82. 82.

    National Institute of Neurological Disorders and Stroke. Huntington’s disease information page (2016).

  83. 83.

    National Heart, Lung, and Blood Institute. Marfan Syndrome (2019).

  84. 84.

    Petrucelli, N., Daly, M. B. & Pal, T. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1998).

  85. 85.

    National Eye Institute. Color blindness (2015).

  86. 86.

    Wallace, D. C. & Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5, a021220 (2013).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    U.S. National Library of Medicine. Leigh syndrome (2018).

  88. 88.

    Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242, 1427–1430 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Galanello, R. & Origa, R. Beta-thalassemia. Orphanet J. Rare Dis. 5, 11 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    U.S. National Library of Medicine. Beta thalassemia (2015).

  91. 91.

    U.S. National Library of Medicine. Spinal muscular atrophy (2018).

  92. 92.

    Davies, J. C., Alton, E. W. & Bush, A. Cystic fibrosis. Br. Med. J. 335, 1255–1259 (2007).

    Google Scholar 

  93. 93.

    Ratjen, F. & Doring, G. Cystic fibrosis. Lancet 361, 681–689 (2003).

    CAS  PubMed  Google Scholar 

  94. 94.

    Sosnay, P. R. et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 45, 1160–1167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shoukhrat M. Mitalipov.

Ethics declarations

Competing interests

S.M. is a co-founder and shareholder of Mitogenome Therapeutics, Inc. The other authors declare no competing financial interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolf, D.P., Mitalipov, P.A. & Mitalipov, S.M. Principles of and strategies for germline gene therapy. Nat Med 25, 890–897 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing