Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer


Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: EGFR-mutant lung adenocarcinoma cells that demonstrate acquired resistance to third-generation EGFR TKIs are sensitive to Aurora kinase inhibition.
Fig. 2: Activation of AURKA is sufficient to cause resistance to EGFR TKIs, and drug combinations induce apoptosis through BIM upregulation in vitro and in vivo.
Fig. 3: EGFR inhibition leads to the activation of TPX2 and AURKA during establishment of drug tolerance where it is necessary for survival and emergence of acquired resistance in vitro.
Fig. 4: Clinical potential of combined EGFR and Aurora kinase inhibition on residual disease and acquired resistance.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. Cell lines generated in this study are available upon reasonable request from the authors.


  1. 1.

    Jänne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 372, 1689–1699 (2015).

    Article  Google Scholar 

  2. 2.

    Sequist, L. V. et al. Rociletinib in EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 372, 1700–1709 (2015).

    Article  Google Scholar 

  3. 3.

    Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  Google Scholar 

  5. 5.

    Blakely, C. M. et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 49, 1693–1704 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Burrell, R. A. & Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8, 1095–1111 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Chabon, J. J. et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun. 7, 11815 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Yang, Z. et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin. Cancer Res. 24, 3097–3107 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Bivona, T. G. & Doebele, R. C. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat. Med. 22, 472–478 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Kim, T. M. et al. Mechanisms of acquired resistance to AZD9291: a mutation-selective, irreversible EGFR inhibitor. J. Thorac. Oncol. 10, 1736–1744 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Li, L. et al. Transformation to small-cell carcinoma as an acquired resistance mechanism to AZD9291: a case report. Oncotarget 8, 18609–18614 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Piotrowska, Z. et al. Heterogeneity underlies the emergence of EGFR T790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. 5, 713–722 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Niederst, M. J. & Engelman, J. A. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci. Signal. 6, re6 (2013).

    Article  Google Scholar 

  18. 18.

    Bivona, T. G. et al. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, 523–526 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Blakely, C. M. et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep. 11, 98–110 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Shien, K. et al. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 73, 3051–3061 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Chen, J. et al. AURKA upregulation plays a role in fibroblast-reduced gefitinib sensitivity in the NSCLC cell line HCC827. Oncol. Rep. 33, 1860–1866 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Eberlein, C. A. et al. Acquired resistance to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models. Cancer Res. 75, 2489–2500 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    Fu, J., Bian, M., Jiang, Q. & Zhang, C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res. 5, 1–10 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Sharifnia, T. et al. Genetic modifiers of EGFR dependence in non-small cell lung cancer. Proc. Natl. Acad. Sci. USA 111, 18661–18666 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Nikonova, A. S., Astsaturov I.Serebriiskii, I. G., Dunbrack, R. L.Jr. & Golemis, E. A. Aurora A kinase (AURKA) in normal and pathological cell division. Cell. Mol. Life Sci. 70, 661–687 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Stewart, S. & Fang, G. Anaphase-promoting complex/cyclosome controls the stability of TPX2 during mitotic exit. Mol. Cell. Biol. 25, 10516–10527 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    Zhou, Y., Ching, Y. P., Chun, A. C. & Jin, D. Y. Nuclear localization of the cell cycle regulator CDH1 and its regulation by phosphorylation. J. Biol. Chem. 278, 12530–12536 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Ercan, D. et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov. 2, 934–947 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Costa, D. B. et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 4, 1669–1679 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Cragg, M. S., Kuroda, J., Puthalakath, H., Huang, D. C. & Strasser, A. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 4, 1681–1689 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    Hübner, A., Barrett, T., Flavell, R. A. & Davis, R. J. Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol. Cell 30, 415–425 (2008).

    Article  Google Scholar 

  33. 33.

    Moustafa-Kamal, M., Gamache, I., Lu, Y., Li, S. & Teodoro, J. G. BimEL is phosphorylated at mitosis by Aurora A and targeted for degradation by βTrCP1. Cell Death Differ. 20, 1393–1403 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell. 3, 51–62 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat. Cell Biol. 4, 871–879 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    Lee, A. J. et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 71, 1858–1870 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    D’Assoro, A. B. et al. The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα+ breast cancer cells. Oncogene 33, 599–610 (2014).

    Article  Google Scholar 

  38. 38.

    Lee, C. K. et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol. 4, 210–216 (2018).

    Article  Google Scholar 

  39. 39.

    Bavetsias, V. & Linardopoulos, S. Aurora kinase inhibitors: currents status and outlook. Front. Oncol. 5, 278 (2015).

    Article  Google Scholar 

  40. 40.

    Melichar, B. et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 16, 395–405 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Chou, T. C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70, 440–446 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Varghese, F., Bukhari, A. B., Malhotra, R. & De, A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE 9, e96801 (2014).

    Article  Google Scholar 

Download references


We thank members of the Bandyopadhyay laboratory for helpful discussions and technical assistance. We also thank J. Gordon from the LCA microscopy core for technical assistance and reagents. This work was supported by National Cancer Institute grant nos. U01CA168370 (S.B.), NIGMS R01GM107671 (S.B.), R01CA169338 (T.G.B) and U54CA224081 (S.B., T.G.B).

Author information




Project conception: K.N.S. and S.B. Performance of experiments: K.N.S., R.B., J.W., J. Rotow, J. Rohrberg, V.E.W., H.J.D., J.G., V.O., G.H., M.M.M., A.M., J.K., H.J.H., L.R. and G.K. Data analysis and interpretation: K.N.S., H.J.D., S.K., A.K., S.D. and G.K. Manuscript writing: K.N.S. and S.B. Manuscript finalization: all authors. Study supervision: T.C.H., A.D.S., F.M., A.G., C.M.B., T.G.B and S.B. Funding: S.B.

Corresponding author

Correspondence to Sourav Bandyopadhyay.

Ethics declarations

Competing interests

H.J.H., L.R., A.D.S. and T.C.H. are employees of Clovis Oncology. S.B. recieves funding and/or has a consultancy relationship with Ideaya Biosciences and Pfizer.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11

Reporting Summary

Supplementary Table 1

Results of drug synergy screen

Supplementary Table 2

Mitotic defects after EGFR TKI treatment

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, K.N., Bhatt, R., Rotow, J. et al. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat Med 25, 111–118 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing