A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate

Abstract

Understanding the mechanisms underlying autoantibody development will accelerate therapeutic target identification in autoimmune diseases such as systemic lupus erythematosus (SLE)1. Follicular helper T cells (TFH cells) have long been implicated in SLE pathogenesis. Yet a fraction of autoantibodies in individuals with SLE are unmutated, supporting that autoreactive B cells also differentiate outside germinal centers2. Here, we describe a CXCR5CXCR3+ programmed death 1 (PD1)hiCD4+ helper T cell population distinct from TFH cells and expanded in both SLE blood and the tubulointerstitial areas of individuals with proliferative lupus nephritis. These cells produce interleukin-10 (IL-10) and accumulate mitochondrial reactive oxygen species as the result of reverse electron transport fueled by succinate. Furthermore, they provide B cell help, independently of IL-21, through IL-10 and succinate. Similar cells are generated in vitro upon priming naive CD4+ T cells with plasmacytoid dendritic cells activated with oxidized mitochondrial DNA, a distinct class of interferogenic toll-like receptor 9 ligand3. Targeting this pathway might blunt the initiation and/or perpetuation of extrafollicular humoral responses in SLE.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Oxidized mtDNA induces a unique pDC phenotype.
Fig. 2: Oxidized mtDNA CD4+ T cells help B cells through IL-10 and succinate.
Fig. 3: Memory CXCR5CXCR3+PD1hiCD4+ T cells represent the blood counterpart of oxidized mtDNA CD4+ T cells.
Fig. 4: IL-10+IFN-γ+ROS+PD1+CD4+ T cells accumulate in PLN lesions.

Data availability

Expression array data from pDCs is available at the Gene Expression Omnibus (GEO) database under accession GSE93679. Expression array data from in vitro–generated CD4+ cells is available at the GEO database under accession GSE118951. Expression array data from ex vivo–isolated CD4+ cells is available at the GEO database under accession GSE109843. ATAC-seq data is available at the GEO database under accession GSE110017. Uncropped data for Supplementary Fig. 2g can be accessed in Supplementary Fig. 8a. All other relevant data are available from the corresponding author directly.

References

  1. 1.

    Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Investig. 115, 407–417 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    Gilliet, M. & Liu, Y. J. Human plasmacytoid-derived dendritic cells and the induction of T-regulatory cells. Hum. Immunol. 63, 1149–1155 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    Ito, T. et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med. 204, 105–115 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Gilliet, M., Cao, W. & Liu, Y. J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    Penna, G., Sozzani, S. & Adorini, L. Cutting edge: selective usage of chemokine receptors by plasmacytoid dendritic cells. J. Immunol. 167, 1862–1866 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    Glimcher, L. H. & Murphy, K. M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  13. 13.

    Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    Jackson, S. K., DeLoose, A. & Gilbert, K. M. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors. Immunology 106, 486–495 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Nag, S., Picard, P. & Stewart, D. J. Expression of nitric oxide synthases and nitrotyrosine during blood-brain barrier breakdown and repair after cold injury. Lab. Investig. 81, 41–49 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    Guaras, A. et al. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep. 15, 197–209 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1ɑ. Nature 496, 238–242 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Oaks, Z., Winans, T., Huang, N., Banki, K. & Perl, A. Activation of the mechanistic target of rapamycin in SLE: explosion of evidence in the last five years. Curr. Rheumatol. Rep. 18, 73 (2016).

    Article  Google Scholar 

  21. 21.

    Rousset, F. et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl Acad. Sci. USA 89, 1890–1893 (1992).

    CAS  Article  Google Scholar 

  22. 22.

    Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    Ueno, H., Banchereau, J. & Vinuesa, C. G. Pathophysiology of T follicular helper cells in humans and mice. Nat. Immunol. 16, 142–152 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Mills, E. & O’Neill, L. A. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 24, 313–320 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    Locci, M. et al. Human circulating PD-1+CXCR3CXCR5+ memory TFH cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39, 758–769 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Patil, V. S. et al. Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci. Immunol, 3, eaan8664 (2018).

  30. 30.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Arce, E. et al. Increased frequency of pre-germinal center B cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. J. Immunol. 167, 2361–2369 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    Dorner, T. & Lipsky, P. E. Correlation of circulating CD27high plasma cells and disease activity in systemic lupus erythematosus. Lupus 13, 283–289 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

    Article  Google Scholar 

  35. 35.

    Blanco, P. et al. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 52, 201–211 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Peti-Peterdi, J. High glucose and renin release: the role of succinate and GPR91. Kidney Int. 78, 1214–1217 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Weening, J. J. et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int. 65, 521–530 (2004).

    Article  Google Scholar 

  40. 40.

    Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    CAS  Article  Google Scholar 

  41. 41.

    Anoopkumar-Dukie, S. et al. Resazurin assay of radiation response in cultured cells. Br. J. Radiol. 78, 945–947 (2005).

    CAS  Article  Google Scholar 

  42. 42.

    Schmitt, N. et al. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat. Immunol. 15, 856–865 (2014).

    Article  Google Scholar 

  43. 43.

    Garrone, P. et al. Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J. Exp. Med. 182, 1265–1273 (1995).

    CAS  Article  Google Scholar 

  44. 44.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    Salabei, J. K., Gibb, A. A. & Hill, B. G. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat. Protoc. 9, 421–438 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Kusminski and R. Gordillo for helping with the metabolic Seahorse experiments. We also thank N. Baldwin, R. Marches and especially our study subjects, healthy donors and their parents. This work was supported by NIH grants P50 AR054083-01 and U19 AIO82715 (V.P.), by the Baylor Scott & White Health Care Research Foundation and by the Drukier Institute for Children’s Health at Weill Cornell Medicine.

Author information

Affiliations

Authors

Contributions

S.C. performed and analyzed most of the experiments, participated in their design, provided critical discussions and co-wrote the manuscript. P.B., B.D., E.M., M.C., S.A., C.H.C. and L.W. performed and analyzed several experiments. R.B., Z.X. and D.T.V perfomed gene expression and ATAC-seq analyses. J. Baisch coordinated the sample drawing and institutional review board–related issues. T.W., M.P., L.N., K.S., J.F. and J.Z. provided subject samples and data. D.U. supervised the ATAC-seq analyses. H.U. provided help designing experiments with TFH cells. J. Banchereau provided critical suggestions and discussions throughout the study and contributed to writing the manuscript. V.P. conceived and supervised this study, was involved in the design and evaluation of all experiments and wrote the manuscript with comments from co-authors.

Corresponding author

Correspondence to Virginia Pascual.

Ethics declarations

Competing interests

V.P. has received a research grant and consulting honorarium from Sanofi-Pasteur.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caielli, S., Veiga, D.T., Balasubramanian, P. et al. A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat Med 25, 75–81 (2019). https://doi.org/10.1038/s41591-018-0254-9

Download citation

Further reading