Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia


Identifying the mechanisms through which genetic risk causes dementia is an imperative for new therapeutic development. Here, we apply a multistage, systems biology approach to elucidate the disease mechanisms in frontotemporal dementia. We identify two gene coexpression modules that are preserved in mice harboring mutations in MAPT, GRN and other dementia mutations on diverse genetic backgrounds. We bridge the species divide via integration with proteomic and transcriptomic data from the human brain to identify evolutionarily conserved, disease-relevant networks. We find that overexpression of miR-203, a hub of a putative regulatory microRNA (miRNA) module, recapitulates mRNA coexpression patterns associated with disease state and induces neuronal cell death, establishing this miRNA as a regulator of neurodegeneration. Using a database of drug-mediated gene expression changes, we identify small molecules that can normalize the disease-associated modules and validate this experimentally. Our results highlight the utility of an integrative, cross-species network approach to drug discovery.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental design and characterization of TPR50 tau Tg mice in divergent genetic backgrounds.
Fig. 2: mRNA consensus coexpression network analysis.
Fig. 3: Transcriptomic and proteomic analyses in human FTD samples.
Fig. 4: miRNA coexpression network analysis.
Fig. 5: Overexpression of miR-203 in vitro and in vivo.
Fig. 6: Small-molecule inhibition of miR-203-induced cell death in vitro.

Data availability

miRNA-seq and mRNA-seq data from TPR50 tau mice, microarray data on PS19 hippocampus, microarray data on overexpression of miR-203 in vitro, RNA-seq on sorted mouse neurons and RNA-seq data with SAHA are available from the NCBI Gene Expression Omnibus database under Gene Expression Omnibus accession number GSE90696. Human FTD miRNA-seq and mRNA-seq data are available from!Synapse:syn7818788. Human UPenn FTD Proteomics data are available from!Synapse:syn9884357. The custom code used for the analysis can be accessed using this link in github:


  1. 1.

    Hinz, F. I. & Geschwind, D. H. Molecular genetics of neurodegenerative dementias. Cold Spring Harb. Perspect. Biol. 9, a023705 (2017).

    PubMed  Google Scholar 

  2. 2.

    Iqbal, K., Liu, F. & Gong, C. X. Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol. 12, 15–27 (2016).

    CAS  PubMed  Google Scholar 

  3. 3.

    Masters, C. L. et al. Alzheimer’s disease. Nat. Rev. Dis. Primers 1, 15056 (2015).

    PubMed  Google Scholar 

  4. 4.

    Kovacs, G. G. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol. Appl. Neurobiol. 41, 3–23 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Mullane, K. & Williams, M. Alzheimer’s therapeutics: continued clinical failures question the validity of the amyloid hypothesis—but what lies beyond? Biochem. Pharmacol. 85, 289–305 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Institute of Medicine. Improving the Utility and Translation of Animal Models for Nervous System Disorders: Workshop Summary (The National Academies Press, Washington DC, 2013).

  7. 7.

    Miller, J. A., Horvath, S. & Geschwind, D. H. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl. Acad. Sci. USA 107, 12698–12703 (2010).

    CAS  PubMed  Google Scholar 

  8. 8.

    Qosa, H. & Kaddoumi, A. Effect of mouse strain as a background for Alzheimer’s disease models on the clearance of amyloid-β. J. Syst. Integr. Neurosci. 2, 135–140 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Weitzner, D. S., Engler-Chiurazzi, E. B., Kotilinek, L. A., Ashe, K. H. & Reed, M. N. Morris Water Maze Test: optimization for mouse strain and testing environment. J. Vis. Exp. e52706 (2015).

  10. 10.

    LaFerla, F. M. & Green, K. N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a0066320 (2012).

    Google Scholar 

  11. 11.

    Webster, S. J., Bachstetter, A. D., Nelson, P. T., Schmitt, F. A. & Van Eldik, L. J. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front. Genet. 5, 88 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Karsten, S. L. et al. A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 51, 549–560 (2006).

    CAS  PubMed  Google Scholar 

  13. 13.

    Onishi, T. et al. Early-onset cognitive deficits and axonal transport dysfunction in P301S mutant tau transgenic mice. Neurosci. Res. 80, 76–85 (2014).

    CAS  PubMed  Google Scholar 

  14. 14.

    Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).

    PubMed  Google Scholar 

  16. 16.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Spillantini, M. G. & Goedert, M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428–433 (1998).

    CAS  PubMed  Google Scholar 

  18. 18.

    Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  19. 19.

    Kuhn, A., Thu, D., Waldvogel, H. J., Faull, R. L. M. & Luthi-Carter, R. Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain. Nat. Methods 8, 945–947 (2011).

    CAS  PubMed  Google Scholar 

  20. 20.

    Miller, J. A., Woltjer, R. L., Goodenbour, J. M., Horvath, S. & Geschwind, D. H. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med. 5, 48 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lage, K. et al. A human phenome–interactome network of protein complexes implicated in geneticdisorders.Nat. Biotechnol. 25, 309–316 (2007).

    CAS  PubMed  Google Scholar 

  22. 22.

    Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    CAS  PubMed  Google Scholar 

  23. 23.

    Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Parikshak, N. N., Gandal, M. J. & Geschwind, D. H. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16, 441–458 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Murray, R. Z., Wylie, F. G., Khromykh, T., Hume, D. A. & Stow, J. L. Syntaxin 6 and Vti1b form a novel SNARE complex, which is up-regulated in activated macrophages to facilitate exocytosis of tumor necrosis Factor-alpha. J. Biol. Chem. 280, 10478–10483 (2005).

    CAS  PubMed  Google Scholar 

  26. 26.

    Gjørlund, M. D. et al. Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1β and activation of fibroblast growth factor receptor-1. FASEB J. 26, 4174–4186 (2012).

    PubMed  Google Scholar 

  27. 27.

    Huang, K. P. et al. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J. Neurosci. 24, 10660–10669 (2004).

    CAS  PubMed  Google Scholar 

  28. 28.

    Jaworski, M. et al. Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity. EMBO J. 33, 2765–2781 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lessard, C. J. et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat. Genet. 45, 1284–1292 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    Ng, A. S. L., Rademakers, R. & Miller, B. L. Frontotemporal dementia: a bridge between dementia and neuromuscular disease. Ann. N. Y. Acad. Sci. 1338, 71–93 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Maeda, S. et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 17, 530–551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Parikshak, N. N. et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540, 423–427 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Xie, J. et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat. Methods 9, 403–409 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Menkes-Caspi, N. et al. Pathological tau disrupts ongoing network activity. Neuron 85, 959–966 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153, 707–720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Jones, L. et al. Convergent genetic and expression data implicate immunity in Alzheimer’s disease. Alzheimers Dement. 11, 658–671 (2015).

    Google Scholar 

  38. 38.

    Narayanan, M. et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol. 10, 743 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Dolmetsch, R. & Geschwind, D. H. The human brain in a dish: the promise of iPSC-derived neurons. Cell 145, 831–834 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hardy, J. Catastrophic cliffs: a partial suggestion for selective vulnerability in neurodegenerative diseases. Biochem. Soc. Trans. 44, 659–661 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Gupta, S., Verma, S., Mantri, S., Berman, N. E. & Sandhir, R. Targeting microRNAs in prevention and treatment of neurodegenerative disorders. Drug Dev. Res. 76, 397–418 (2015).

    CAS  PubMed  Google Scholar 

  42. 42.

    Janssen, H. L. A. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    CAS  PubMed  Google Scholar 

  43. 43.

    Young, D. D., Connelly, C. M., Grohmann, C. & Deiters, A. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J. Am. Chem. Soc. 132, 7976–7981 (2010).

    CAS  PubMed  Google Scholar 

  44. 44.

    Allen, M. et al. Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases. Sci. Data 3, 160089 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Seyfried, N. T. et al. A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst. 4, 60–72.e4 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Prudencio, M. et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. 18, 1175–1182 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Chang, L.-C. et al. A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies. PLoS ONE 9, e90980 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ferrari, R. et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 13, 686–699 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Höglinger, G. U. et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699–705 (2011).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Schroeder, A. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wes, P. D. et al. Tau overexpression impacts a neuroinflammation gene expression network perturbed in Alzheimer’s disease. PLoS ONE 9, e106050 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Srinivasan, K. et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7, 11295 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Chishti, M. A. et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276, 21562–21570 (2001).

    CAS  PubMed  Google Scholar 

  56. 56.

    Matarin, M. et al. A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep. 10, 633–644 (2015).

    CAS  PubMed  Google Scholar 

  57. 57.

    Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-content normalization for RNA-seq data.BMC Bioinformatics 12, 480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  65. 65.

    Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204–216 (2012).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).

    PubMed  Google Scholar 

  67. 67.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Li, A. & Horvath, S. Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics 23, 222–231 (2007).

    PubMed  Google Scholar 

  69. 69.

    Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Zambon, A. C. et al. GO-Elite: a flexible solution for pathway and ontology over-representation. Bioinformatics 28, 2209–2210 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. nterJournal,Complex Systems 1695, 1–9 (2006).

    Google Scholar 

  72. 72.

    Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Langfelder, P., Luo, R., Oldham, M. C. & Horvath, S. Is my network module preserved and reproducible? PLoS Comput. Biol. 7, e1001057 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Rivals, I., Personnaz, L., Taing, L. & Potier, M. C. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23, 401–407 (2007).

    CAS  PubMed  Google Scholar 

  75. 75.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Methodol. 57, 289–300 (1995).

    Google Scholar 

  76. 76.

    Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Rossin, E. J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 7, e1001273 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics 13, 2513–2526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  81. 81.

    Cheng, C., Fass, D. M., Folz-Donahue, K., Macdonald, M. E. & Haggarty, S. J. Highly expandable human iPS cell–derived neural progenitor cells (NPC) and neurons for central nervous system disease modeling andhigh-throughput screening. Curr. Protoc. Hum. Genet. 92, 21.8.1–21.8.21 (2017).

    Google Scholar 

  82. 82.

    Almeida, S. et al. Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell Rep. 2, 789–798 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Biswas, M. H. U. et al. MMP-9 and MMP-2 contribute to neuronal cell death in iPSC models of frontotemporal dementia with MAPT mutations. Stem Cell Reports 7, 316–324 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


Funding for this work was provided by Takeda Pharmaceuticals (D.H.G.), Rainwater Charitable Foundation/Tau consortium (D.H.G., S.J.H.), NIH grants to D.H.G., S.J.H., A.L. (5U01AG046161) and J.R. (5R25 NS065723) and Larry L. Hillblom Foundation Postdoctoral Fellowship to V.S. K.N., H.T., A.O., K.H. and S.K. are employees of Takeda Pharmaceuticals. The authors thank M. Hattori, Y. Obayashi and K. Nakamura for their contribution to the TPR50 mouse sample preparation and analysis. The authors thank M. Gearing at the Emory Alzheimer’s Disease Research Center brain bank for providing human FTD samples. The authors also thank N. Parikshak for help with network analysis and critical reading of the manuscript. We thank Eli Lilly and Company scientists for generating the Tg4510 microglia RNA-seq data and providing access to them. For the PSP and FTD temporal cortex RNA-seq dataset, study data were provided by the following sources: Mayo Clinic Alzheimer’s Disease Genetic Studies, led by N. Taner and S. G. Younkin, Mayo Clinic Jacksonville, using samples from the Mayo Clinic Study of Aging, Mayo Clinic Alzheimer’s Disease Research Center, and Mayo Clinic Brain Bank. Data collection was supported through funding by National Institute on Aging (NIA) grants P50 AG016574, R01 AG032990, U01 AG046139, R01 AG018023, U01 AG006576, U01 AG006786, R01 AG025711, R01 AG017216, R01 AG003949, National Institute of Neurological Disorders and Stroke (NINDS) grant R01 NS080820, the CurePSP Foundation, and support from the Mayo Foundation. Study data include samples collected through the Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona. The Brain and Body Donation Program is supported by the NINDS (U24 NS072026 National Brain and Tissue Resource for Parkinson’s Disease and Related Disorders), the NIA (P30 AG19610 Arizona Alzheimer’s Disease Core Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer’s Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease Consortium) and the Michael J. Fox Foundation for Parkinson’s Research. Tg4510 replication and CRND8 RNA-seq data were provided by the NIH U01 AG046139. We thank J. Lewis, K. Duff, D. Westaway and D. Borchelt for generating these lines of transgenic mice and providing access to them.

Author information





V.S. and D.H.G. planned and directed the experiments, guided the analysis and wrote the manuscript in conjunction with F.I.H. and J.E.R. All authors revised and edited the final version of the manuscript. F.I.H. performed all the experiments in mouse cortical cultures. V.S. performed all the bioinformatic analyses and performed dissections on human postmortem samples and isolated RNA. K.N., H.T., A.O., K.H. and S.K. bred the TPR50 mouse, characterized the F1 hybrids and collected the tissue samples. J.E.R. performed bioinformatic analysis using purified glial cells. J.E.R. and A.S. stained for and quantified inflammation in mouse brain samples. IFGC consortia members collected and analyzed FTD GWAS data. N.T.S., J.J.L. and A.I.L. performed mass spectrometry–based quantitative proteomics on human FTD samples obtained from M.G., V.M.V.D. and J.Q.T. The SAHA experiments were performed by C.C. and S.J.H. on human iPSC-derived neurons from tau and control patients.

Corresponding author

Correspondence to Daniel H. Geschwind.

Ethics declarations

Competing interests

D.H.G. has received research funding from Takeda Pharmaceutical Company Limited. K.N., H.T., A.O., K.H. and S.K. are employees of Takeda Pharmaceutical Company Limited.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10

Reporting Summary

Supplementary Table 1

TPR50 mRNA-seq Analysis

Supplementary Table 2

Human transcriptomics and proteomics data

Supplementary Table 3

TPR50 miRNA-seq analysis

Supplementary Table 4

Module preservation and connectivity map

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swarup, V., Hinz, F.I., Rexach, J.E. et al. Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nat Med 25, 152–164 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing