Abstract

Preventing the immune escape of tumor cells by blocking inhibitory checkpoints, such as the interaction between programmed death ligand-1 (PD-L1) and programmed death-1 (PD-1) receptor, is a powerful anticancer approach. However, many patients do not respond to checkpoint blockade. Tumor PD-L1 expression is a potential efficacy biomarker, but the complex mechanisms underlying its regulation are not completely understood. Here, we show that the eukaryotic translation initiation complex, eIF4F, which binds the 5′ cap of mRNAs, regulates the surface expression of interferon-γ-induced PD-L1 on cancer cells by regulating translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor. eIF4F complex formation correlates with response to immunotherapy in human melanoma. Pharmacological inhibition of eIF4A, the RNA helicase component of eIF4F, elicits powerful antitumor immune-mediated effects via PD-L1 downregulation. Thus, eIF4A inhibitors, in development as anticancer drugs, may also act as cancer immunotherapies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data sets generated for this study can be accessed at GEO (GSE118521). Uncropped immunoblots are available in Supplementary Fig. 13, data obtained from human tumor samples in Supplementary Table 4 and primer sequences in Supplementary Table 5.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

  2. 2.

    Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

  3. 3.

    Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

  4. 4.

    Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

  5. 5.

    Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4 (2016).

  6. 6.

    Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

  7. 7.

    Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

  8. 8.

    Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

  9. 9.

    Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099.e6 (2017).

  10. 10.

    Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).

  11. 11.

    Mezzadra, R. et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106–110 (2017).

  12. 12.

    Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).

  13. 13.

    Ribas, A. & Hu-Lieskovan, S. What does PD-L1 positive or negative mean? J. Exp. Med. 213, 2835–2840 (2016).

  14. 14.

    Chu, J., Cargnello, M., Topisirovic, I. & Pelletier, J. Translation initiation factors: reprogramming protein synthesis in cancer. Trends. Cell Biol. 26, 918–933 (2016).

  15. 15.

    Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16, 288–304 (2016).

  16. 16.

    Pelletier, J., Graff, J., Ruggero, D. & Sonenberg, N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res. 75, 250–263 (2015).

  17. 17.

    Chu, J., Cajal, S. R. Y., Sonenberg, N. & Pelletier, J. Eukaryotic initiation factor 4F-sidestepping resistance mechanisms arising from expression heterogeneity. Curr. Opin. Genet. Dev. 48, 89–96 (2017).

  18. 18.

    de la Parra, C., Walters, B. A., Geter, P. & Schneider, R. J. Translation initiation factors and their relevance in cancer. Curr. Opin. Genet. Dev. 48, 82–88 (2017).

  19. 19.

    Zindy, P. et al. Formation of the eIF4F translation-initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors. Cancer Res. 71, 4068–4073 (2011).

  20. 20.

    Boussemart, L. et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 513, 105–109 (2014).

  21. 21.

    Wolfe, A. L. et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014).

  22. 22.

    Bhat, M. et al. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 14, 261–278 (2015).

  23. 23.

    Steinberger, J., Chu, J., Maiga, R. I., Sleiman, K. & Pelletier, J. Developing anti-neoplastic biotherapeutics against eIF4F. Cell. Mol. Life Sci. 74, 1681–1692 (2017).

  24. 24.

    Malka-Mahieu, H., Newman, M., Desaubry, L., Robert, C. & Vagner, S. Molecular pathways: the eIF4F translation initiation complex-new opportunities for cancer treatment. Clin. Cancer Res. 23, 21–25 (2017).

  25. 25.

    Barretina, J. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

  26. 26.

    Sadlish, H. et al. Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem. Biol. 8, 1519–1527 (2013).

  27. 27.

    Chu, J. et al. CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA Helicase, eIF4A. Cell Rep. 15, 2340–2347 (2016).

  28. 28.

    Bordeleau, M. E. et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J. Clin. Invest. 118, 2651–2660 (2008).

  29. 29.

    Cencic, R. et al. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS ONE 4, e5223 (2009).

  30. 30.

    Rubio, C. A. et al. Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation. Genome Biol. 15, 476 (2014).

  31. 31.

    Bordeleau, M. E. et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat. Chem. Biol. 2, 213–220 (2006).

  32. 32.

    Bordeleau, M. E. et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl Acad. Sci. USA 102, 10460–10465 (2005).

  33. 33.

    Dhomen, N. et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009).

  34. 34.

    Le Bacquer, O. et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J. Clin. Invest. 117, 387–396 (2007).

  35. 35.

    Colina, R. et al. Translational control of the innate immune response through IRF-7. Nature 452, 323–328 (2008).

  36. 36.

    Lin, C. J. et al. Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Rep. 1, 325–333 (2012).

  37. 37.

    Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).

  38. 38.

    Halder, K., Largy, E., Benzler, M., Teulade-Fichou, M. P. & Hartig, J. S. Efficient suppression of gene expression by targeting 5′-UTR-based RNA quadruplexes with bisquinolinium compounds. Chembiochem 12, 1663–1668 (2011).

  39. 39.

    Cooper, Z. A. et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol. Res. 2, 643–654 (2014).

  40. 40.

    Rajasekhar, V. K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell 12, 889–901 (2003).

  41. 41.

    Chu, J. & Pelletier, J. Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochim. Biophys. Acta 1849, 781–791 (2015).

  42. 42.

    Lazaris-Karatzas, A., Montine, K. S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990).

  43. 43.

    Graff, J. R. et al. Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int. J. Cancer 60, 255–263 (1995).

  44. 44.

    Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

  45. 45.

    Wendel, H. G. et al. Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res. 66, 7639–7646 (2006).

  46. 46.

    Malka-Mahieu, H. et al. Synergistic effects of eIF4A and MEK inhibitors on proliferation of NRAS-mutant melanoma cell lines. Cell Cycle 15, 2405–2409 (2016).

  47. 47.

    Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

  48. 48.

    Patton, J. T. et al. The translation inhibitor silvestrol exhibits direct anti-tumor activity while preserving innate and adaptive immunity against EBV-driven lymphoproliferative disease. Oncotarget 6, 2693–2708 (2015).

  49. 49.

    Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

  50. 50.

    Meissl, K., Macho-Maschler, S., Muller, M. & Strobl, B. The good and the bad faces of STAT1 in solid tumours. Cytokine 89, 12–20 (2017).

  51. 51.

    Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016).

  52. 52.

    Reading, J. L. & Quezada, S. A. Too much of a good thing? Chronic IFN fuels resistance to cancer immunotherapy. Immunity 45, 1181–1183 (2016).

  53. 53.

    Botton, T. et al. In vitro and in vivo anti-melanoma effects of ciglitazone. J. Invest. Dermatol. 129, 1208–1218 (2009).

  54. 54.

    Tichet, M. et al. Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nat. Commun. 6, 6993 (2015).

  55. 55.

    Tsukiyama-Kohara, K. et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 7, 1128–1132 (2001).

  56. 56.

    Banko, J. L. et al. The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25, 9581–9590 (2005).

  57. 57.

    Yajima, I. et al. Spatiotemporal gene control by the Cre-ERT2 system in melanocytes. Genesis 44, 34–43 (2006).

  58. 58.

    Dorard, C. et al. RAF proteins exert both specific and compensatory functions during tumour progression of NRAS-driven melanoma. Nat. Commun. 8, 15262 (2017).

Download references

Acknowledgements

We thank M. A. Shipp for the PD-L1 luciferase promoter, J. Wargo for the BRAF/PTEN mouse cell line (BP), S. Rocchi for the CMVβGal plasmid and WM793 melanoma cells and M.-P. Teulade-Fichou for the PhenDC3. We thank the Institut Curie Genomics (A. Rapinat and D. Gentien) platform for assistance with the microarray experiments and the animal facility of the Orsay site of the Institut Curie. We thank the Gustave Roussy platform ‘Module de developpement en pathologie INSERM U981/SIRI SOCRATE’ and ‘Plateforme d’évaluation Préclinique’. We thank M. Tichet, M. Khaled and S. Apcher for helpful discussions. This study was supported by INSERM, CNRS, Gustave Roussy and Institut Curie. This study was also funded by grants from Ligue Nationale Contre le Cancer (Equipe labellisée) (to S.V. and A.E.), Institut National du Cancer (grant number 2013-1-MEL-01-ICR-1) (to S.V., A.E. and C.R.), ‘Ensemble contre le mélanome’ (to C.R. and S.V.), ‘Vaincre le Mélanome’ (to M.C. and C.R.), Les Sites de recherche Intégré sur le Cancer (SIRIC Socrate) label Gustave Roussy (to C.R.), Fondation Bettencourt Schueller (to C.R.) and Fondation ARC pour la Recherche sur le Cancer (project PJA20161204588) (to S.S.). M.C. was supported by a post-doctoral fellowship from ‘Association pour la recherche contre le cancer’ and R.G. was supported by a pre-doctoral fellowship from ‘Fondation pour la Recherche Médicale, (FDT2017043739).

Author information

Author notes

  1. These authors contributed equally: Michaël Cerezo, Ramdane Guemiri.

  2. These authors jointly supervised this work: Stéphan Vagner, Caroline Robert.

Affiliations

  1. INSERM U981, Gustave Roussy, Villejuif, France

    • Michaël Cerezo
    • , Ramdane Guemiri
    • , Isabelle Girault
    • , Shensi Shen
    • , Delphine Allard
    • , Caroline Welsch
    • , Sandrine Agoussi
    • , Julien Adam
    •  & Caroline Robert
  2. Université Paris Sud, Université Paris-Saclay, Kremlin-Bicêtre, France

    • Michaël Cerezo
    • , Ramdane Guemiri
    • , Isabelle Girault
    • , Shensi Shen
    • , Delphine Allard
    • , Caroline Welsch
    • , Sandrine Agoussi
    • , Alexander M. Eggermont
    •  & Caroline Robert
  3. Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France

    • Ramdane Guemiri
    • , Hélène Malka-Mahieu
    • , Sylvain Martineau
    • , Caroline Welsch
    •  & Stéphan Vagner
  4. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France

    • Ramdane Guemiri
    • , Hélène Malka-Mahieu
    • , Sylvain Martineau
    • , Caroline Welsch
    •  & Stéphan Vagner
  5. Equipe Labellisée Ligue Contre le Cancer, Paris, France

    • Ramdane Guemiri
    • , Sabine Druillennec
    • , Hélène Malka-Mahieu
    • , Sylvain Martineau
    • , Caroline Welsch
    • , Charlène Estrada
    • , Alain Eychène
    •  & Stéphan Vagner
  6. Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France

    • Sabine Druillennec
    • , Charlène Estrada
    •  & Alain Eychène
  7. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France

    • Sabine Druillennec
    • , Charlène Estrada
    •  & Alain Eychène
  8. Department of Pathology and Laboratory Medicine (BIOpath), Gustave Roussy, Univesité Paris-Saclay, Villejuif, France

    • Julien Adam
    •  & Jean Yves Scoazec
  9. Oncology Department, Gustave Roussy, Université Paris-Saclay, Villejuif, France

    • Cristina Libenciuc
    • , Emilie Routier
    • , Séverine Roy
    • , Alexander M. Eggermont
    • , Stéphan Vagner
    •  & Caroline Robert
  10. CNRS-Strasbourg University, UMR7200, Illkirch, France

    • Laurent Désaubry
  11. Department of Biochemistry, McGill University, Montréal, Québec, Canada

    • Nahum Sonenberg

Authors

  1. Search for Michaël Cerezo in:

  2. Search for Ramdane Guemiri in:

  3. Search for Sabine Druillennec in:

  4. Search for Isabelle Girault in:

  5. Search for Hélène Malka-Mahieu in:

  6. Search for Shensi Shen in:

  7. Search for Delphine Allard in:

  8. Search for Sylvain Martineau in:

  9. Search for Caroline Welsch in:

  10. Search for Sandrine Agoussi in:

  11. Search for Charlène Estrada in:

  12. Search for Julien Adam in:

  13. Search for Cristina Libenciuc in:

  14. Search for Emilie Routier in:

  15. Search for Séverine Roy in:

  16. Search for Laurent Désaubry in:

  17. Search for Alexander M. Eggermont in:

  18. Search for Nahum Sonenberg in:

  19. Search for Jean Yves Scoazec in:

  20. Search for Alain Eychène in:

  21. Search for Stéphan Vagner in:

  22. Search for Caroline Robert in:

Contributions

M.C. and R.G. designed and performed in vitro and in vivo experiments and analyzed data. H.M.-M. established the silvestrol-resistant cell line, the BrafV600E4ebp1−/−4ebp2−/− cell lines and performed associated experiments. S.D., C.E. and A.E. established the BrafV600E4ebp1−/−4ebp2−/− mouse model and BrafV600E4ebp1−/−4ebp2−/− cell lines and analyzed data. S.S. contributed to microarray data analysis. D.A. contributed to in vivo experiments. I.G., C.W. and S.A. performed experiments on patient samples and analyzed data. S.M. performed polysomal fractionation. J.A. and J.Y.S. analyzed IHC and PLA on human samples. C.L., E.R. and S.R. provided clinical samples. L.D. provided FL3. N.S., A.M.E. and A.E. gave advice; M.C., S.V. and C.R. wrote the manuscript. M.C. and R.G. share first authorship; S.D., I.G. and H.M.-M. share second authorship; S.V. and C.R. supervised all research and are joint senior authors.

Competing interests

C.R. is an occasional consultant to Merck Sharp and Dohme, Bristol-Myers Squibb, Merck and Roche. All other authors have no competing interests.

Corresponding authors

Correspondence to Stéphan Vagner or Caroline Robert.

Supplementary Information

  1. Supplementary Text and Figures

    Supplementary Figures 1–13 and Supplementary Table 3

  2. Reporting Summary

  3. Supplementary Table 1

    Change in mRNA in IFN-γ-treated cells compared to untreated

  4. Supplementary Table 2

    mRNA downregulated translationally by silvestrol and upregulated transcriptionally by IFN-γ

  5. Supplementary Table 4

    Data from human tumor samples

  6. Supplementary Table 5

    Primer sequences

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41591-018-0217-1

Further reading