Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-guided combination therapy to potently improve the function of mutant CFTRs

Abstract

Available corrector drugs are unable to effectively rescue the folding defects of CFTR-ΔF508 (or CFTR-F508del), the most common disease-causing mutation of the cystic fibrosis transmembrane conductance regulator, a plasma membrane (PM) anion channel, and thus to substantially ameliorate clinical phenotypes of cystic fibrosis (CF). To overcome the corrector efficacy ceiling, here we show that compounds targeting distinct structural defects of CFTR can synergistically rescue mutant expression and function at the PM. High-throughput cell-based screens and mechanistic analysis identified three small-molecule series that target defects at nucleotide-binding domain (NBD1), NBD2 and their membrane-spanning domain (MSD) interfaces. Although individually these compounds marginally improve ΔF508-CFTR folding efficiency, function and stability, their combinations lead to ~50–100% of wild-type-level correction in immortalized and primary human airway epithelia and in mouse nasal epithelia. Likewise, corrector combinations were effective against rare missense mutations in various CFTR domains, probably acting via structural allostery, suggesting a mechanistic framework for their broad application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of small-molecule ΔF508-CFTR correctors by high-throughput screening.
Fig. 2: Corrector mechanism of action.
Fig. 3: Structure-guided combination of corrector compounds restores ΔF508-CFTR biogenesis and stability.
Fig. 4: Corrector combinations rescue ΔF508-CFTR folding and functional defects.
Fig. 5: Corrector combinations rescue the ΔF508-CFTR function in human bronchial and nasal as well as mouse nasal epithelia.
Fig. 6: Rescue of rare CF folding mutants by allosteric corrector combination.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Veit, G. et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27, 424–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sosnay, P. R. et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 45, 1160–1167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cutting, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet. 16, 45–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, F., Zhang, Z., Csanady, L., Gadsby, D. C. & Chen, J. Molecular structure of the human CFTR ion channel. Cell 169, 85–95 e88 (2017).

  5. Hunt, J. F., Wang, C. & Ford, R. C. Cystic fibrosis transmembrane conductance regulator (ABCC7)structure. Cold Spring Harb. Perspect. Med. 3, a009514 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hwang, T. C. & Kirk, K. L. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb. Perspect. Med. 3, a009498 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chong, P. A., Kota, P., Dokholyan, N. V. & Forman-Kay, J. D. Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb. Perspect. Med. 3, a009522 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Okiyoneda, T., Apaja, P. M. & Lukacs, G. L. Protein quality control at the plasma membrane. Curr. Opin. Cell Biol. 23, 483–491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rabeh, W. M. et al. Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell 148, 150–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mendoza, J. L. et al. Requirements for efficient correction of ΔF508 CFTR revealed by analyses of evolved sequences. Cell 148, 164–174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farinha, C. M. et al. Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction. Chem. Biol. 20, 943–955 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. He, L. et al. Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly. J. Mol. Biol. 427, 106–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Hall, J. D. et al. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy. Protein Sci. 25, 360–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui, L. et al. Domain interdependence in the biosynthetic assembly of CFTR. J. Mol. Biol. 365, 981–994 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Du, K. & Lukacs, G. L. Cooperative assembly and misfolding of CFTR domains in vivo. Mol. Biol. Cell 20, 1903–1915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Du, K., Sharma, M. & Lukacs, G. L. The ΔF508 cystic fibrosis mutation impairs domain–domain interactions and arrests post-translational folding of CFTR. Nat. Struct. Mol. Biol. 12, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Okiyoneda, T. et al. Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nat. Chem. Biol. 9, 444–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Vernon, R. M. et al. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations. J. Biol. Chem. 292, 14147–14164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phuan, P. W. et al. Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy. Mol. Pharmacol. 86, 42–51 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lopes-Pacheco, M. et al. Combination of correctors rescue ΔF508-CFTR by reducing its association with Hsp40 and Hsp27. J. Biol. Chem. 290, 25636–25645 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y., Loo, T. W., Bartlett, M. C. & Clarke, D. M. Additive effect of multiple pharmacological chaperones on maturation of CFTR processing mutants. Biochem. J. 406, 257–263 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor-Cousar, J. L. et al. Tezacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N. Engl. J. Med. 377, 2013–2023 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Van Goor, F. et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. USA 108, 18843–18848 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Ren, H. Y. et al. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol. Biol. Cell 24, 3016–3024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wainwright, C. E. et al. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220–231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Veit, G. et al. Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci. Transl. Med. 6, 246ra97 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cholon, D. M. et al. Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis. Sci. Transl. Med. 6, 246ra96 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ehrhardt, C. et al. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell Tissue Res. 323, 405–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Thibodeau, P. H. et al. The cystic fibrosis–causing mutation ΔF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J. Biol. Chem. 285, 35825–35835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pedemonte, N. et al. Small-molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest. 115, 2564–2571 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pissarra, L. S. et al. Solubilizing mutations used to crystallize one CFTR domain attenuate the trafficking and channel defects caused by the major cystic fibrosis mutation. Chem. Biol. 15, 62–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Apaja, P. M., Xu, H. & Lukacs, G. L. Quality control for unfolded proteins at the plasma membrane. J. Cell Biol. 191, 553–570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duarri, A. et al. Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects. Hum. Mol. Genet. 17, 3728–3739 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takahashi, K. et al. V2 vasopressin receptor (V2R) mutations in partial nephrogenic diabetes insipidus highlight protean agonism of V2R antagonists. J. Biol. Chem. 287, 2099–2106 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Apaja, P. M. et al. Ubiquitination-dependent quality control of hERG K+channel with acquired and inherited conformational defect at the plasma membrane. Mol. Biol. Cell 24, 3787–3804 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, F., Kartner, N. & Lukacs, G. L. Limited proteolysis as a probe for arrested conformational maturation of ΔF508 CFTR. Nat. Struct. Biol. 5, 180–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Hegedus, T. et al. F508del CFTR with two altered RXR motifs escapes from ER quality control but its channel activity is thermally sensitive. Biochim. Biophys. Acta 1758, 565–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Bagdany, M. et al. Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nat. Commun. 8, 398 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Veit, G. et al. Ribosomal stalk protein silencing partially corrects the ΔF508-CFTR functional expression defect. PLoS Biol. 14, e1002462 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pranke, I. M. et al. Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Sci. Rep. 7, 7375 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu, X. et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat. Protoc. 12, 439–451 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Müller, L., Brighton, L. E., Carson, J. L., Fischer, W. A. II & Jaspers, I. Culturing of human nasal epithelial cells at the air liquid interface. J. Vis. Exp. 80, 50646 (2013).

    Google Scholar 

  43. Avramescu, R. G. et al. Mutation-specific downregulation of CFTR2 variants by gating potentiators. Hum. Mol. Genet. 26, 4873–4885 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ostedgaard, L. S. et al. Processing and function of CFTR-ΔF508 are species-dependent. Proc. Natl. Acad. Sci. USA 104, 15370–15375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. French, P. J. et al. A ΔF508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. J. Clin. Invest. 98, 1304–1312 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. da Cunha, M. F. et al. Analysis of nasal potential in murine cystic fibrosis models. Int. J. Biochem. Cell Biol. 80, 87–97 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Van Goor, F., Yu, H., Burton, B. & Hoffman, B. J. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J. Cyst. Fibros. 13, 29–36 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Robert, R. et al. Correction of the Δ phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine. Mol. Pharmacol. 77, 922–930 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Coffman, K. C. et al. Constrained bithiazoles: small molecule correctors of defective ΔF508-CFTR protein trafficking. J. Med. Chem. 57, 6729–6738 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rowe, S. M. & Verkman, A. S. Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb. Perspect. Med. 3, a009761 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li, C. & Naren, A. P. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr. Biol. (Camb) 2, 161–177 (2010).

    Article  CAS  Google Scholar 

  52. Monterisi, S. et al. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J. Cell Sci. 125, 1106–1117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pankow, S. et al. F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528, 510–516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Trzcińska-Daneluti, A. M. et al. RNA interference screen to identify kinases that suppress rescue of ΔF508-CFTR. Mol. Cell. Proteomics 14, 1569–1583 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Okiyoneda, T. et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329, 805–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tosco, A. et al. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ. 23, 1380–1393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roth, D. M. et al. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol. 12, e1001998 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hegde, R. N. et al. Unravelling druggable signalling networks that control F508del-CFTR proteostasis. eLife 4, e10365 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Calamini, B. et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 8, 185–196 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Griesenbach, U., Geddes, D. M. & Alton, E. W. The pathogenic consequences of a single mutated CFTR gene. Thorax 54 (Suppl 2), S19–S23 (1999).

  61. Veit, G. et al. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol. Biol. Cell 23, 4188–4202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180, 599–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neuberger, T., Burton, B., Clark, H. & Van Goor, F. Use of primary cultures of human bronchial epithelial cells isolated from cystic fibrosis patients for the pre-clinical testing of CFTR modulators. Methods Mol. Biol. 741, 39–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. van Doorninck, J. H. et al. A mouse model for the cystic fibrosis delta F508 mutation. EMBO J. 14, 4403–4411 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Namkung, W., Thiagarajah, J. R., Phuan, P. W. & Verkman, A. S. Inhibition of Ca2+-activated Cl channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J. 24, 4178–4186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Myszka, D. G. Improving biosensor analysis. J. Mol. Recognit. 12, 279–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Aleksandrov, A. A. & Riordan, J. R. Regulation of CFTR ion channel gating by MgATP. FEBS Lett. 431, 97–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Saussereau, E. L. et al. Characterization of nasal potential difference in cftr knockout and F508del-CFTR mice. PLoS One 8, e57317 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the individuals who volunteered to participate in this study. We thank D. C. Gruenert for the parental CFBE41o- cell line; W. E. Finkbeiner for supplying HBE cells, J. Riordan and the Cystic Fibrosis Foundation for the 660 antibody, P. Thomas for providing vectors encoding some of the CFTR2 mutants and members of the Cystic Fibrosis Folding Consortium for advice. This work was supported by Vaincre La Mucoviscidose to A.E. and I.S.-G., the Canadian Institutes of Health Research (MOP-142221 to G.L.L. and PJT-153095 to G.V., E.M., and G.L.L.), National Institute of Diabetes & Digestive & Kidney Diseases (5R01DK075302 to G.L.L.) and the Cystic Fibrosis Foundation Therapeutics to G.L.L. as well as Cystic Fibrosis Canada to G.L.L. We acknowledge the Canada Foundation for Innovation for infrastructure support: Bruker UltrafleXtreme MALDI-TOF/TOF system (grant no. 32616, awarded to G. Multhaup and G.L.L.); BIACORE T200 SPR system (grant no. 228340 awarded to G. Multhaup). R.G.A. is a recipient of the Fonds de Recherche du Québec Santé (FRQS) Doctoral Training Scholarship. G.L.L. is a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Contributions

The overall design of the study was by G.V., W.G.B. and G.L.L.; G.V., H.X., E.D., R.G.A., M.B., L.K.B., C.L., W.L., K.M., S.G., P.A.M., and E.A. performed experiments and analyzed the results; A.R. cloned and purified the avi-tagged NBD1 variants; M.A.H. performed the SPR studies; S.F. and E.M. collected the patient samples for HNE isolation; A.E. and I.S.-G. designed and directed the mouse studies; A.P.O., P.M. and W.G.B. designed and directed the HTS. The manuscript was primarily written by G.V. and G.L.L. with input from all authors.

Corresponding authors

Correspondence to Guido Veit or Gergely L. Lukacs.

Ethics declarations

Competing interests

C.L., W.L., K.M., S.G., P.A.M., F.J.K., E.A., A.J.O., P.M. and W.G.B. are employees of the Genomics Institute of the Novartis Research Foundation. I.S.-G. has been principal investigator in Vertex initiated clinical trials, received a Vertex Pharmaceuticals Innovation Award and served as a scientific advisory board member for Vertex Pharmaceuticals. G.L.L. is a member of the Scientific Advisory Board of Proteostasis Therapeutics Inc. All other authors declare no competing financial or non-financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veit, G., Xu, H., Dreano, E. et al. Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat Med 24, 1732–1742 (2018). https://doi.org/10.1038/s41591-018-0200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0200-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research