Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4

Abstract

Cancer cells rely on dysregulated gene expression. This establishes specific transcriptional addictions that may be therapeutically exploited. Yet, the mechanisms that are ultimately responsible for these addictions are poorly understood. Here, we investigated the transcriptional dependencies of transformed cells to the transcription factors YAP and TAZ. YAP/TAZ physically engage the general coactivator bromodomain-containing protein 4 (BRD4), dictating the genome-wide association of BRD4 to chromatin. YAP/TAZ flag a large set of enhancers with super-enhancer-like functional properties. YAP/TAZ-bound enhancers mediate the recruitment of BRD4 and RNA polymerase II at YAP/TAZ-regulated promoters, boosting the expression of a host of growth-regulating genes. Treatment with small-molecule inhibitors of BRD4 blunts YAP/TAZ pro-tumorigenic activity in several cell or tissue contexts, causes the regression of pre-established, YAP/TAZ-addicted neoplastic lesions and reverts drug resistance. This work sheds light on essential mediators, mechanisms and genome-wide regulatory elements that are responsible for transcriptional addiction in cancer and lays the groundwork for a rational use of BET inhibitors according to YAP/TAZ biology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: BRD4 associates to YAP/TAZ and is a required cofactor for YAP/TAZ transcriptional activity.
Fig. 2: YAP/TAZ are required for BRD4 recruitment to chromatin.
Fig. 3: YAP/TAZ are instrumental for BRD4 recruitment to chromatin.
Fig. 4: YAP/TAZ and BRD4 regulate Pol II loading and H3K122ac on TSSs.
Fig. 5: Treatment with a BET inhibitor blunts YAP/TAZ-addicted breast tumors.
Fig. 6: Treatment with BET inhibitors blunts YAP/TAZ-driven responses in vivo.

Data availability

The RNA-seq and ChIP–seq data generated in this study have been deposited in the GEO database under accession GSE102409. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Villicana, C., Cruz, G. & Zurita, M. The basal transcription machinery as a target for cancer therapy. Cancer Cell Int. 14, 18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Andrieu, G., Belkina, A. C. & Denis, G. V. Clinical trials for BET inhibitors run ahead of the science. Drug Discov. Today Technol. 19, 45–50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 728–736 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Stathis, A. et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6, 492–500 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Pott, S. & Lieb, J. D. What are super-enhancers? Nat. Genet. 47, 8–12 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Azzolin, L. et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Bai, H. et al. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology 56, 1097–1107 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24, 2383–2388 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Chen, Q. et al. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 28, 432–437 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Su, T. et al. Two-signal requirement for growth-promoting function of Yap in hepatocytes. eLife 4, e02948 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zhang, W. et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci. Signal. 7, ra42 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Taniguchi, K. et al. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Panciera, T. et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19, 725–737 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Johnson, R. & Halder, G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 13, 63–79 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Rafiee, M. R., Girardot, C., Sigismondo, G. & Krijgsveld, J. Expanding the circuitry of pluripotency by selective isolation of chromatin-associated proteins. Mol. Cell 64, 624–635 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Skibinski, A. et al. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep. 6, 1059–1072 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Oh, H. et al. Yorkie promotes transcription by recruiting a histone methyltransferase complex. Cell Rep. 8, 449–459 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Stein, C. et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet. 11, e1005465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Chen, H. I. & Sudol, M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl Acad. Sci. USA 92, 7819–7823 (1995).

    CAS  Article  Google Scholar 

  25. 25.

    Shu, S. et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 529, 413–417 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wang, Y. et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 163, 174–186 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Galli, G. G. et al. YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol. Cell 60, 328–337 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Devaiah, B. N. et al. BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat. Struct. Mol. Biol. 23, 540–548 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tropberger, P. et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 152, 859–872 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Swellam, M. et al. Aberrant methylation of APC and RARβ2 genes in breast cancer patients. IUBMB Life 67, 61–68 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Bernasconi, E. et al. Preclinical evaluation of the BET bromodomain inhibitor BAY 1238097 for the treatment of lymphoma. Br. J. Haematol. 178, 936–948 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Storz, P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 14, 296–304 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kim, M. H. et al. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 35, 462–478 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zuo, Q. et al. AXL/AKT axis mediated-resistance to BRAF inhibitor depends on PTEN status in melanoma. Oncogene 37, 3275–3289 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Lee, B. S. et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem. Biophys. Res. Commun. 491, 493–499 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Enzo, E. et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34, 1349–1370 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Roessler, S. et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 70, 10202–10212 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Rizos, H. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin. Cancer Res. 20, 1965–1977 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    Xu, Y. & Vakoc, C. R. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb. Perspect. Med. 7, a026674 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Bisgrove, D. A., Mahmoudi, T., Henklein, P. & Verdin, E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc. Natl Acad. Sci. USA 104, 13690–13695 (2007).

    CAS  Article  Google Scholar 

  48. 48.

    Hotta, A. et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods 6, 370–376 (2009).

    CAS  Article  Google Scholar 

  49. 49.

    Garcia-Gutierrez, P., Mundi, M. & Garcia-Dominguez, M. Association of bromodomain BET proteins with chromatin requires dimerization through the conserved motif B. J. Cell Sci. 125, 3671–3680 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    Azzolin, L. et al. Role of TAZ as mediator of Wnt signaling. Cell 151, 1443–1456 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Martello, G. et al. A microRNA targeting Dicer for metastasis control. Cell 141, 1195–1207 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).

    Article  CAS  Google Scholar 

  54. 54.

    Means, A. L. et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 132, 3767–3776 (2005).

    CAS  Article  Google Scholar 

  55. 55.

    Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27–38 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Sansom, O. J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 18, 1385–1390 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Schuler, M., Dierich, A., Chambon, P. & Metzger, D. Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse. Genesis 39, 167–172 (2004).

    CAS  Article  Google Scholar 

  58. 58.

    Wagner, K. U. et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25, 4323–4330 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Belteki, G. et al. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 33, e51 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  Google Scholar 

  62. 62.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Chapuy, B. et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24, 777–790 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Picaud, S. et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl Acad. Sci. USA 110, 19754–19759 (2013).

    CAS  Article  Google Scholar 

  72. 72.

    Mori, M. et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell 156, 893–906 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Fontanals-Cirera, B. et al. Harnessing BET inhibitor sensitivity reveals AMIGO2 as a melanoma survival gene. Mol. Cell 68, 731–744.e9 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Roessler, S. et al. Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterology 142, 957–966.e12 (2012).

    CAS  Article  Google Scholar 

  75. 75.

    Du, P., Kibbe, W. A. & Lin, S. M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).

    CAS  Article  Google Scholar 

  76. 76.

    Adorno, M. et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. C. Marine (Leuven Center for Cancer Biology), J. Kim (KAIST) for the gift of the cell lines; D. J. Pan (University of Texas), A. R. Clarke (Cardiff University), F. Camargo (Boston Children’s Hospital) and P. Chambon (University of Strasbourg) for the gifts of mice. MMTV-cre mice were purchased from The Jackson Laboratory, where they were kindly deposited by L. Hennighausen. This work is supported by the AIRC Special Program Molecular Clinical Oncology ‘5 per mille’, by an AIRC PI-Grant to S.P. and by the Epigenetics Flagship project CNR-MIUR. This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (DENOVOSTEM grant agreement no. 670126).

Author information

Affiliations

Authors

Contributions

F.Z., M.C. and S.P. designed the study, analyzed the data and wrote the manuscript. F.Z., G.B. and L.F. performed the experiments. M.Forcato and S.B. performed the bioinformatics analysis. L.A., E.Q., D.D.B., V.G. and M.Fassan performed the animal experiments and the histological analysis. P.L. and B.H. provided the reagents and advice for the animal experiments. G.S. and J.K. performed the mass spectrometry. A.M. performed the initial experiments of this study.

Corresponding authors

Correspondence to Michelangelo Cordenonsi or Stefano Piccolo.

Ethics declarations

Competing interests

B.H. and P.L. are employees of Bayer AG. S.P. is a consultant for and received institutional grants from Bayer AG.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7

Reporting Summary

Supplementary Table 1

YAP/TAZ nuclear interactors

Supplementary Table 2

Direct YAP/TAZ target genes inhibited by JQ1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zanconato, F., Battilana, G., Forcato, M. et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat Med 24, 1599–1610 (2018). https://doi.org/10.1038/s41591-018-0158-8

Download citation

Further reading