Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Learning from bacterial competition in the host to develop antimicrobials

Abstract

In recent years, the alarming increase of antibiotic resistance, compounded by the simultaneous decrease in development of new antibiotics, has created serious concerns for public health. Moreover, current antibiotics also target the beneficial commensal microbes (microbiota) that inhabit our body, sometimes with significant health consequences. The answer to the antibiotic crisis thus involves broad, creative efforts to develop new treatments for infectious agents. Here I discuss what can be learned from investigating microbial competition in vivo and how this knowledge can be utilized to devise new narrow-spectrum therapeutics that target bacterial pathogens while minimizing deleterious effects to the microbiota.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Mechanisms of interference competition.
Fig. 2: Mechanisms of exploitative competition.

References

  1. Tan, S. Y. & Tatsumura, Y. Alexander Fleming (1881–1955): discoverer of penicillin. Singapore Med. J. 56, 366–367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bo, G. Giuseppe Brotzu and the discovery of cephalosporins. Clin. Microbiol. Infect. 6 (Suppl 3), 6–9 (2000).

    Article  PubMed  Google Scholar 

  3. Maffioli, S. I. et al. Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell 169, 1240–1248.e23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Costa, K. C., Bergkessel, M., Saunders, S., Korlach, J. & Newman, D. K. Enzymatic degradation of phenazines can generate energy and protect sensitive organisms from toxicity. MBio 6, e01520–e15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Costa, K. C., Glasser, N. R., Conway, S. J. & Newman, D. K. Pyocyanin degradation by a tautomerizing demethylase inhibits Pseudomonas aeruginosa biofilms. Science 355, 170–173 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. The antibiotic alarm. Nature 495, 141 (2013).

  8. Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. P&T 40, 277–283 (2015).

    Google Scholar 

  9. Tacconelli, E. & Magrini, N. Global priority list of antibiotic-resistant bacteria to guide research discovery and development of new antibiotics. (World Health Organization, Geneva, 2017).

  10. Queenan, A. M. & Bush, K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20, 440–458 (2007). table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pogue, J. M., Mann, T., Barber, K. E. & Kaye, K. S. Carbapenem-resistant Acinetobacter baumannii: epidemiology, surveillance and management. Expert Rev. Anti Infect. Ther. 11, 383–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Meletis, G., Exindari, M., Vavatsi, N., Sofianou, D. & Diza, E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia 16, 303–307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwaber, M. J. & Carmeli, Y. Carbapenem-resistant Enterobacteriaceae: a potential threat. J. Am. Med. Assoc. 300, 2911–2913 (2008).

    Article  CAS  Google Scholar 

  14. van Duin, D., Kaye, K. S., Neuner, E. A. & Bonomo, R. A. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn. Microbiol. Infect. Dis. 75, 115–120 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Delcour, A. H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 1794, 808–816 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Hancock, R. E. The bacterial outer membrane as a drug barrier. Trends Microbiol. 5, 37–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ubeda, C. & Pamer, E. G. Antibiotics, microbiota, and immune defense. Trends Immunol. 33, 459–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stubbendieck, R. M. & Straight, P. D. Multifaceted interfaces of bacterial competition. J. Bacteriol. 198, 2145–2155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dobson, A., Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocin production: a probiotic trait? Appl. Environ. Microbiol. 78, 1–6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hassan, M., Kjos, M., Nes, I. F., Diep, D. B. & Lotfipour, F. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 113, 723–736 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Hayes, C. S., Koskiniemi, S., Ruhe, Z. C., Poole, S. J. & Low, D. A. Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb. Perspect. Med. 4, a010025 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aoki, S. K. et al. Contact-dependent inhibition of growth in Escherichia coli. Science 309, 1245–1248 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alteri, C.J. & Mobley, H.L. The versatile type VI secretion system. in Virulence Mechanisms of Bacterial Pathogens, 5th edn. (eds. Kudva, I. et al.) 337–356 (ASM Press, Washington DC, 2016).

  32. Xavier, K. B. & Bassler, B. L. Interference with AI-2-mediated bacterial cell–cell communication. Nature 437, 750–753 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, F., Gao, Y., Chen, X., Yu, Z. & Li, X. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int. J. Mol. Sci. 14, 17477–17500 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. LaSarre, B. & Federle, M. J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 77, 73–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Curtis, M. M. et al. QseC inhibitors as an antivirulence approach for Gram-negative pathogens. MBio 5, e02165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Loughlin, C. T. et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl Acad. Sci. USA 110, 17981–17986 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vraspir, J. M. & Butler, A. Chemistry of marine ligands and siderophores. Ann. Rev. Mar. Sci. 1, 43–63 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell host & microbe 13, 509–519 (2013).

    Article  CAS  Google Scholar 

  39. Crosa, J. H. & Walsh, C. T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Traxler, M. F., Seyedsayamdost, M. R., Clardy, J. & Kolter, R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 86, 628–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chu, B. C. et al. Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23, 601–611 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl 1), 4554–4561 (2011).

  44. FAO/WHO. Expert consultation on evaluation of health and nutritional properties of probiotics in food including milk powder with live lactic acid bacteria. (Food and Agriculture Organization/World Health Organization, Cordoba, Argentina, 2001).

    Google Scholar 

  45. Behnsen, J., Deriu, E., Sassone-Corsi, M. & Raffatellu, M. Probiotics: properties, examples, and specific applications. Cold Spring Harb. Perspect. Med. 3, a010074 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yan, F. & Polk, D. B. Probiotics and immune health. Curr. Opin. Gastroenterol. 27, 496–501 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Servin, A. L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28, 405–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl Acad. Sci. USA 104, 7617–7621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Riboulet-Bisson, E. et al. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One 7, e31113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kluytmans, J., van Belkum, A. & Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10, 505–520 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gong, J. Q. et al. Skin colonization by Staphylococcus aureus in patients with eczema and atopic dermatitis and relevant combined topical therapy: a double-blind multicentre randomized controlled trial. Br. J. Dermatol. 155, 680–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Geisinger, E., Muir, T. W. & Novick, R. P. agr receptor mutants reveal distinct modes of inhibition by staphylococcal autoinducing peptides. Proc. Natl Acad. Sci. USA 106, 1216–1221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paharik, A. E. et al. Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22, 746–756.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abt, M. C., McKenney, P. T. & Pamer, E. G. Clostridium difficile colitis: pathogenesis and host defence. Nat. Rev. Microbiol. 14, 609–620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sorg, J. A. & Sonenshein, A. L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192, 4983–4990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  PubMed  CAS  Google Scholar 

  62. Reeves, A. E., Koenigsknecht, M. J., Bergin, I. L. & Young, V. B. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80, 3786–3794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lawley, T. D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Choi, V. M. et al. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat. Med. 22, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zitomersky, N. L., Coyne, M. J. & Comstock, L. E. Longitudinal analysis of the prevalence, maintenance, and IgA response to species of the order Bacteroidales in the human gut. Infect. Immun. 79, 2012–2020 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chatzidaki-Livanis, M., Geva-Zatorsky, N. & Comstock, L. E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl Acad. Sci. USA 113, 3627–3632 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hecht, A. L. et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17, 1281–1291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Russell, A. B. et al. A type VI secretion–related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16, 227–236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wexler, A. G. et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc. Natl Acad. Sci. USA 113, 3639–3644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Winter, S. E. & Bäumler, A. J. Dysbiosis in the inflamed intestine: chance favors the prepared microbe. Gut Microbes 5, 71–73 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Behnsen, J. et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity 40, 262–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deriu, E. et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14, 26–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sassone-Corsi, M. et al. Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proc. Natl Acad. Sci. USA 113, 13462–13467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mike, L. A., Smith, S. N., Sumner, C. A., Eaton, K. A. & Mobley, H. L. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc. Natl Acad. Sci. USA 113, 13468–13473 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ilott, N. E. et al. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling. ISME J. 10, 2389–2404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rebuffat, S. Microcin in action: amazing defence strategies of Enterobacteria. Biochem. Soc. Trans. 40, 1456–1462 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Duquesne, S., Destoumieux-Garzón, D., Peduzzi, J. & Rebuffat, S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24, 708–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Baquero, F. & Moreno, F. The microcins. FEMS Microbiol. Lett. 23, 117–124 (1978).

    Article  Google Scholar 

  86. Asensio, C., Pérez-Díaz, J. C., Martinez, M. C. & Baquero, F. A new family of low molecular weight antibiotics from enterobacteria. Biochem. Biophys. Res. Commun. 69, 7–14 (1976).

    Article  CAS  PubMed  Google Scholar 

  87. Thomas, X. et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J. Biol. Chem. 279, 28233–28242 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Vassiliadis, G., Destoumieux-Garzon, D. & Peduzzi, J. in Prokaryotic Antimicrobial Peptides (eds. Drider, D. & Rebuffat, S.) (Springer, New York, 2011).

  89. Braun, V., Patzer, S. I. & Hantke, K. Ton-dependent colicins and microcins: modular design and evolution. Biochimie 84, 365–380 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Zheng, T. & Nolan, E. M. Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J. Am. Chem. Soc. 136, 9677–9691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chairatana, P., Zheng, T. & Nolan, E. M. Targeting virulence: salmochelin modification tunes the antibacterial activity spectrum of β-lactams for pathogen-selective killing of Escherichia coli. Chem. Sci. 6, 4458–4471 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tillotson, G. S. Trojan horse antibiotics—a novel way to circumvent Gram-negative bacterial resistance? Infect. Dis. (Auckl.) 9, 45–52 (2016).

    Google Scholar 

  93. Mislin, G. L. & Schalk, I. J. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 6, 408–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Ji, C., Juárez-Hernández, R. E. & Miller, M. J. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med. Chem. 4, 297–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Tomaras, A. P. et al. Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 4197–4207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim, A. et al. Pharmacodynamic profiling of a siderophore-conjugated monocarbam in Pseudomonas aeruginosa: assessing the risk for resistance and attenuated efficacy. Antimicrob. Agents Chemother. 59, 7743–7752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kohira, N. et al. In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Agents Chemother. 60, 729–734 (2015).

    Article  PubMed  CAS  Google Scholar 

  98. Ito, A. et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 60, 7396–7401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ito, A. et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob. Agents Chemother. 62, e01454–17 (2018).

    Article  PubMed  Google Scholar 

  100. Charlop-Powers, Z. et al. Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proc. Natl Acad. Sci. USA 113, 14811–14816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nothias, L. F., Knight, R. & Dorrestein, P. C. Antibiotic discovery is a walk in the park. Proc. Natl Acad. Sci. USA 113, 14477–14479 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Donia, M. S. & Fischbach, M. A. HUMAN MICROBIOTA. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Mousa, W. K., Athar, B., Merwin, N. J. & Magarvey, N. A. Antibiotics and specialized metabolites from the human microbiota. Nat. Prod. Rep. 34, 1302–1331 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gonzalez, D. J. et al. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 157, 2485–2492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cogen, A. L., Nizet, V. & Gallo, R. L. Skin microbiota: a source of disease or defence? Br. J. Dermatol. 158, 442–455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Sassone-Corsi, M. & Raffatellu, M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J. Immunol. 194, 4081–4087 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.R. would like to thank S.P. Nuccio for helpful discussions and editing of the manuscript. M.R. is supported by NIH Public Health Service Grants AI114625, AI126277, AI121928, and AI126465. M.R. holds an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Raffatellu.

Ethics declarations

Competing interests

The author has a patent application related to siderophore-conjugate immunization.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raffatellu, M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med 24, 1097–1103 (2018). https://doi.org/10.1038/s41591-018-0145-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0145-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing