Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors

An Author Correction to this article was published on 22 January 2019

This article has been updated

Abstract

T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell–deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell–activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: T cell lymphopenia and splenic contraction in treatment-naïve subjects with GBM.
Fig. 2: Recapitulated T cell lymphopenia and lymphoid organ contraction in murine glioma.
Fig. 3: Naïve T cells accumulate in the bone marrow of mice and subjects with GBM.
Fig. 4: T cell accumulation in bone marrow reflects intracranial tumor location rather than tumor histologic type.
Fig. 5: Loss of surface S1P1 on T cells directs their sequestration in bone marrow in the setting of intracranial tumors.
Fig. 6: Hindering S1P1 internalization abrogates T cell sequestration in bone marrow.

Change history

  • 22 January 2019

    In the version of this article originally published, the figure callout in this sentence was incorrect: “Furthermore, in S1P1-KI mice themselves, whereas PD-1 blockade was ineffectual as monotherapy, the effects of 4-1BB agonism and checkpoint blockade proved additive, with the combination prolonging median survival and producing a 50% long-term survival rate (Fig. 6f).” The callout should have been to Supplementary Fig. 6b. The error has been corrected in the PDF and HTML versions of the article.

References

  1. 1.

    Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    CAS  Google Scholar 

  2. 2.

    Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    CAS  Google Scholar 

  3. 3.

    Dix, A. R., Brooks, W. H., Roszman, T. L. & Morford, L. A. Immune defects observed in patients with primary malignant brain tumors. J. Neuroimmunol. 100, 216–232 (1999).

    CAS  PubMed  Google Scholar 

  4. 4.

    Dunn, G. P., Fecci, P. E. & Curry, W. T. Cancer immunoediting in malignant glioma. Neurosurgery 71, 201–222 (2012).

    PubMed  Google Scholar 

  5. 5.

    Fecci, P. E., Heimberger, A. B. & Sampson, J. H. Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin. Cancer Res. 20, 5620–5629 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Woroniecka, K. I., Rhodin, K. E., Chongsathidkiet, P., Keith, K. A. & Fecci, P. E. T-cell dysfunction in glioblastoma: applying a new framework. Clin. Cancer Res. 24, 1–11 (2018).

    Google Scholar 

  7. 7.

    Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol. 19, v1–v88 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Brooks, W. H., Roszman, T. L., Mahaley, M. S. & Woosley, R. E. Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clin. Exp. Immunol. 29, 61–66 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Garris, C. S., Blaho, V. A., Hla, T. & Han, M. H. Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond. Immunology 142, 347–353 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rosen, H., Gonzalez-Cabrera, P. J., Sanna, M. G. & Brown, S. Sphingosine 1-phosphate receptor signaling. Annu. Rev. Biochem. 78, 743–768 (2009).

    CAS  PubMed  Google Scholar 

  11. 11.

    Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    CAS  PubMed  Google Scholar 

  12. 12.

    Drouillard, A. et al. Human naive and memory T cells display opposite migratory responses to sphingosine-1 phosphate. J. Immunol. 200, 551–557 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407 (2003).

    CAS  PubMed  Google Scholar 

  14. 14.

    Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    CAS  PubMed  Google Scholar 

  15. 15.

    Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    CAS  PubMed  Google Scholar 

  16. 16.

    Lo, C. G., Xu, Y., Proia, R. L. & Cyster, J. G. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med. 201, 291–301 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zajac, A. J. & Harrington, L. E. Tissue-resident T cells lose their S1P1 exit visas. Cell. Mol. Immunol. 11, 221–223 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Maeda, Y., Seki, N., Sato, N., Sugahara, K. & Chiba, K. Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow. Int. Immunol. 22, 515–525 (2010).

    CAS  PubMed  Google Scholar 

  19. 19.

    Blaho, V. A. et al. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 523, 342–346 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Allende, M. L., Yamashita, T. & Proia, R. L. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102, 3665–3667 (2003).

    CAS  PubMed  Google Scholar 

  21. 21.

    Arnon, T. I. et al. GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333, 1898–1903 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat. Med. 19, 465–472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    CAS  PubMed  Google Scholar 

  24. 24.

    Chi, H. & Flavell, R. A. Cutting edge: regulation of T cell trafficking and primary immune responses by sphingosine 1-phosphate receptor 1. J. Immunol. 174, 2485–2488 (2005).

    CAS  PubMed  Google Scholar 

  25. 25.

    Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat. Immunol. 11, 1047–1056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Garris, C. S. et al. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat. Immunol. 14, 1166–1172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lee, H. et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat. Med. 16, 1421–1428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Deng, H. et al. Discovery of clinical candidate GSK1842799 as a selective S1P1 receptor agonist (prodrug) for multiple sclerosis. ACS Med. Chem. Lett. 4, 942–947 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Jin, J. et al. Development of a selective S1P1 receptor agonist, Syl930, as a potential therapeutic agent for autoimmune encephalitis. Biochem. Pharmacol. 90, 50–61 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Yamamoto, R. et al. ASP4058, a novel agonist for sphingosine 1-phosphate receptors 1 and 5, ameliorates rodent experimental autoimmune encephalomyelitis with a favorable safety profile. PloS ONE 9, e110819 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Reeves, P. M., Kang, Y. L. & Kirchhausen, T. Endocytosis of ligand-activated sphingosine 1-phosphate receptor 1 mediated by the clathrin-pathway. Traffic 17, 40–52 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189, 3462–3471 (2012).

    CAS  PubMed  Google Scholar 

  35. 35.

    Abuhusain, H. J. et al. A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J. Biol. Chem. 288, 37355–37364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Omuro, A. et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: Results from exploratory phase 1 cohorts of CheckMate 143. Neuro Oncol. 20, 674–686 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Brooks, W. H. et al. Immunobiology of primary intracranial tumors. Part 5: Correlation of a lymphocyte index and clinical status. J. Neurosurg. 54, 331–337 (1981).

    CAS  PubMed  Google Scholar 

  38. 38.

    Fecci, P. E. et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66, 3294–3302 (2006).

    CAS  PubMed  Google Scholar 

  39. 39.

    Morford, L. A., Dix, A. R., Brooks, W. H. & Roszman, T. L. Apoptotic elimination of peripheral T lymphocytes in patients with primary intracranial tumors. J. Neurosurg. 91, 935–946 (1999).

    CAS  PubMed  Google Scholar 

  40. 40.

    Hughes, M. A., Parisi, M., Grossman, S. & Kleinberg, L. Primary brain tumors treated with steroids and radiotherapy: low CD4 counts and risk of infection. Int. J. Radiat. Oncol. Biol. Phys. 62, 1423–1426 (2005).

    CAS  PubMed  Google Scholar 

  41. 41.

    Grossman, S. A. et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin. Cancer Res. 17, 5473–5480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Mahaley, M. S. Jr. et al. Immunobiology of primary intracranial tumors. Part 1: Studies of the cellular and humoral general immune competence of brain-tumor patients. J. Neurosurg. 46, 467–476 (1977).

    PubMed  Google Scholar 

  43. 43.

    Jackson, C. M. et al. Systemic tolerance mediated by melanoma brain tumors is reversible by radiotherapy and vaccination. Clin. Cancer Res. 22, 1161–1172 (2016).

    CAS  PubMed  Google Scholar 

  44. 44.

    Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 16(Suppl.), iv1–iv63 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Frej, C. et al. Quantification of sphingosine 1-phosphate by validated LC-MS/MS method revealing strong correlation with apolipoprotein M in plasma but not in serum due to platelet activation during blood coagulation. Anal. Bioanal. Chem. 407, 8533–8542 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank G.E. Archer, K.A. Batich, T.A. Chewning, K.L. Congdon, K.A. Keith, R.J. Lefkowitz, P.K. Norberg, E.A. Reap, L.A.M. Rein, K.E. Rhodin, A. Seas, S.H. Shen, R.J. Schmittling, D.J. Snyder, C.M. Suryadevara, A.M. Swartz, W.H. Tomaszewski, D.S. Wilkinson, W. Xie, H. Yang, and members of the Duke Brain Tumor Immunotherapy Program for their insights throughout the study. We would like to thank M. Foster and J.W. Thompson from the Proteomics and Metabolomics Shared Resource, Duke Center for Genomic and Computational Biology for help with liquid chromatography-tandem mass spectrometry analyses. We would like to thank M.R. Llewellyn for the preparation of medical illustrations. This work was supported by institutional start-up funds from Duke University Medical Center, The Sontag Foundation Distinguished Scientist Award, and the National Institutes of Health R01NS099096 to P.E.F.

Author information

Affiliations

Authors

Contributions

P.C., C.J., S.K., F.L., N.C.S., J.-V.C., B.V.N., and P.E.F. obtained and/or analyzed human data. P.C., C.J., S.K., X.C., S.H.F., K.W., A.A.E., C.A.D., H.R.K., L.S.-P., T.A.C., and P.E.F. designed, carried out, and/or analyzed in vitro and in vivo animal experiments. J.I.E. provided pathological characterization and immunohistochemistry analyses. J.E.H. provided biostatistics consultation. J.H.S., M.D.G., R.L.M., G.D., W.T.C., and P.E.F. provided feedback and supervised all research. P.C., C.A.D., and P.E.F. wrote the manuscript. All authors read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Peter E. Fecci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chongsathidkiet, P., Jackson, C., Koyama, S. et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 24, 1459–1468 (2018). https://doi.org/10.1038/s41591-018-0135-2

Download citation

Further reading

Search

Quick links