Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The exerkine apelin reverses age-associated sarcopenia

Abstract

Sarcopenia, the degenerative loss of skeletal muscle mass, quality and strength, lacks early diagnostic tools and new therapeutic strategies to prevent the frailty-to-disability transition often responsible for the medical institutionalization of elderly individuals. Herein we report that production of the endogenous peptide apelin, induced by muscle contraction, is reduced in an age-dependent manner in humans and rodents and is positively associated with the beneficial effects of exercise in older persons. Mice deficient in either apelin or its receptor (APLNR) presented dramatic alterations in muscle function with increasing age. Various strategies that restored apelin signaling during aging further demonstrated that this peptide considerably enhanced muscle function by triggering mitochondriogenesis, autophagy and anti-inflammatory pathways in myofibers as well as enhancing the regenerative capacity by targeting muscle stem cells. Taken together, these findings revealed positive regulatory feedback between physical activity, apelin and muscle function and identified apelin both as a tool for diagnosis of early sarcopenia and as the target of an innovative pharmacological strategy to prevent age-associated muscle weakness and restore physical autonomy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aged skeletal muscle has a reduced capacity for apelin production.
Fig. 2: Apln and Aplnr deficiency have consequences on muscle aging.
Fig. 3: Chronic apelin supplementation reverses age-associated muscle weakness.
Fig. 4: APLNR-mediated pathways in aged muscle cells.
Fig. 5: Satellite cells are targeted by apelin during muscle regeneration in aged mice.
Fig. 6: Apelin is correlated with beneficial exercise in humans.

Similar content being viewed by others

References

  1. Janssen, I., Shepard, D. S., Katzmarzyk, P. T. & Roubenoff, R. The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 52, 80–85 (2004).

    PubMed  Google Scholar 

  2. Han, K. et al. Sarcopenia as a determinant of blood pressure in older Koreans: findings from the Korea National Health and Nutrition Examination Surveys (KNHANES) 2008-2010. PLoS One 9, e86902 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Anker, S. D., Morley, J. E. & von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 7, 512–514 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Pasco, J. A. et al. Sarcopenia and the common mental disorders: a potential regulatory role of skeletal muscle on brain function? Curr. Osteoporos. Rep. 13, 351–357 (2015).

    PubMed  Google Scholar 

  5. Martinez, B. P. et al. Frequency of sarcopenia and associated factors among hospitalized elderly patients. BMC Musculoskelet. Disord. 16, 108 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Robertson, D. A., Savva, G. M. & Kenny, R. A. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res. Rev. 12, 840–851 (2013).

    PubMed  Google Scholar 

  7. Rockwood, K. & Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. A Biol. Sci. Med. Sci. 62, 722–727 (2007).

    PubMed  Google Scholar 

  8. Samper-Ternent, R., Al Snih, S., Raji, M. A., Markides, K. S. & Ottenbacher, K. J. Relationship between frailty and cognitive decline in older Mexican Americans. J. Am. Geriatr. Soc. 56, 1845–1852 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Giannoulis, M. G., Martin, F. C., Nair, K. S., Umpleby, A. M. & Sonksen, P. Hormone replacement therapy and physical function in healthy older men. Time to talk hormones? Endocr. Rev. 33, 314–377 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hepple, R. T. Mitochondrial involvement and impact in aging skeletal muscle. Front. Aging Neurosci. 6, 211 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Johnson, M. L., Robinson, M. M. & Nair, K. S. Skeletal muscle aging and the mitochondrion. TEM 24, 247–256 (2013).

    CAS  PubMed  Google Scholar 

  12. Cartee, G. D., Hepple, R. T., Bamman, M. M. & Zierath, J. R. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 23, 1034–1047 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888 (2016).

    CAS  PubMed  Google Scholar 

  14. Snijders, T. et al. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age (Dordr.) 36, 9699 (2014).

    Google Scholar 

  15. Bernet, J. D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fry, C. S. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat. Med. 21, 76–80 (2015).

    CAS  PubMed  Google Scholar 

  17. Castan-Laurell, I. et al. Apelin, diabetes, and obesity. Endocrine 40, 1–9 (2011).

    CAS  PubMed  Google Scholar 

  18. Dray, C. et al. Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans. Am. J. Physiol. Endocrinol. Metab. 298, E1161–E1169 (2010).

    CAS  PubMed  Google Scholar 

  19. Dray, C. et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 8, 437–445 (2008).

    CAS  PubMed  Google Scholar 

  20. Besse-Patin, A. et al. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int. J. Obes. (Lond.) 38, 707–713 (2014).

    CAS  Google Scholar 

  21. Fujie, S. et al. Reduction of arterial stiffness by exercise training is associated with increasing plasma apelin level in middle-aged and older adults. PLoS One 9, e93545 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Newman, A. B. et al. Sarcopenia: alternative definitions and associations with lower extremity function. J. Am. Geriatr. Soc. 51, 1602–1609 (2003).

    PubMed  Google Scholar 

  23. Vellas, B. et al. Mapt Study: a multidomain approach for preventing alzheimer’s disease: design and baseline data. J. Prev. Alzheimers Dis. 1, 13–22 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuba, K. et al. Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload. Circ. Res. 101, e32–e42 (2007).

    CAS  PubMed  Google Scholar 

  25. Yamamoto, T. et al. Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle. Biochim. Biophys. Acta 1810, 853–862 (2011).

    CAS  PubMed  Google Scholar 

  26. Wang, B. et al. Construction and analysis of compact muscle-specific promoters for AAV vectors. Gene Ther. 15, 1489–1499 (2008).

    CAS  PubMed  Google Scholar 

  27. Tai, P. W. et al. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer. Skelet. Muscle 1, 25 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hauser, M. A. et al. Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol. Ther. 2, 16–25 (2000).

    CAS  PubMed  Google Scholar 

  29. Katugampola, S. D., Maguire, J. J., Matthewson, S. R. & Davenport, A. P. [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br. J. Pharmacol. 132, 1255–1260 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pitkin, S. L., Maguire, J. J., Bonner, T. I. & Davenport, A. P. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol. Rev. 62, 331–342 (2010).

    CAS  PubMed  Google Scholar 

  31. Yang, P. et al. Elabela/toddler is an endogenous agonist of the apelin APJ receptor in the adult cardiovascular system, and exogenous administration of the peptide compensates for the downregulation of its expression in pulmonary arterial hypertension. Circulation 135, 1160–1173 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Medhurst, A. D. et al. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J. Neurochem. 84, 1162–1172 (2003).

    CAS  PubMed  Google Scholar 

  33. Jia, Y. X. et al. Apelin protects myocardial injury induced by isoproterenol in rats. Regul. Pept. 133, 147–154 (2006).

    CAS  PubMed  Google Scholar 

  34. Chun, H. J. et al. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J. Clin. Invest. 118, 3343–3354 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacobs, R. A. et al. Fast-twitch glycolytic skeletal muscle is predisposed to age-induced impairments in mitochondrial function. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1010–1022 (2013).

    CAS  PubMed  Google Scholar 

  36. Demontis, F., Piccirillo, R., Goldberg, A. L. & Perrimon, N. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis. Model. Mech. 6, 1339–1352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stewart, V. H., Saunders, D. H. & Greig, C. A. Responsiveness of muscle size and strength to physical training in very elderly people: a systematic review. Scand. J. Med. Sci. Sports 24, e1–e10 (2014).

    CAS  PubMed  Google Scholar 

  38. Pahor, M. et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA 311, 2387–2396 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Westerblad, H. & Allen, D. G. Emerging roles of ROS/RNS in muscle function and fatigue. Antioxid. Redox Signal. 15, 2487–2499 (2011).

    CAS  PubMed  Google Scholar 

  40. Snijders, T. et al. A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Exp. Physiol. 97, 762–773 (2012).

    CAS  PubMed  Google Scholar 

  41. Allen, D. G., Lamb, G. D. & Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287–332 (2008).

    CAS  PubMed  Google Scholar 

  42. Masri, B., Morin, N., Cornu, M., Knibiehler, B. & Audigier, Y. Apelin (65–77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J. 18, 1909–1911 (2004).

    CAS  PubMed  Google Scholar 

  43. Xie, F. et al. Apelin-13 promotes cardiomyocyte hypertrophy via PI3K–Akt–ERK1/2–p70S6K and PI3K-induced autophagy. Acta Biochim. Biophys. Sin. (Shanghai) 47, 969–980 (2015).

    CAS  Google Scholar 

  44. García-Prat, L., Sousa-Victor, P. & Muñoz-Cánoves, P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J. 280, 4051–4062 (2013).

    PubMed  Google Scholar 

  45. Lukjanenko, L. et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat. Med. 22, 897–905 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pahor, M. et al. Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1157–1165 (2006).

    PubMed  Google Scholar 

  47. Papachristou, E. et al. The relationships between body composition characteristics and cognitive functioning in a population-based sample of older British men. BMC Geriatr. 15, 172 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Rai, R. et al. Downregulation of the apelinergic axis accelerates aging, whereas its systemic restoration improves the mammalian healthspan. Cell Rep. 21, 1471–1480 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Attané, C. et al. Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo. J. Mol. Endocrinol. 46, 21–28 (2011).

    PubMed  Google Scholar 

  50. Zhang, H. et al. Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia. J. Cell. Mol. Med. 18, 542–553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Paturi, S. et al. Effects of aging and gender on muscle mass and regulation of Akt–mTOR–p70s6k related signaling in the F344BN rat model. Mech. Ageing Dev. 131, 202–209 (2010).

    CAS  PubMed  Google Scholar 

  52. Sandri, M. et al. Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1–Akt–mTOR–FoxO pathway. Biogerontology 14, 303–323 (2013).

    CAS  PubMed  Google Scholar 

  53. Ambrose, C. Muscle weakness during aging: a deficiency state involving declining angiogenesis. Ageing Res. Rev. 23(Pt B), 139–153 (2015).

    PubMed  Google Scholar 

  54. Minetti, G. C. et al. Gαi2 signaling is required for skeletal muscle growth, regeneration, and satellite cell proliferation and differentiation. Mol. Cell. Biol. 34, 619–630 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Bertrand, C. et al. Effects of dietary eicosapentaenoic acid (EPA) supplementation in high-fat fed mice on lipid metabolism and apelin/APJ system in skeletal muscle. PLoS One 8, e78874 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yue, P. et al. Apelin is necessary for the maintenance of insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 298, E59–E67 (2010).

    CAS  PubMed  Google Scholar 

  57. Son, J. S. et al. Effects of exercise-induced apelin levels on skeletal muscle and their capillarization in type 2 diabetic rats. Muscle Nerve 56, 1155–1163 (2017).

    CAS  PubMed  Google Scholar 

  58. Dray, C. et al. The intestinal glucose–apelin cycle controls carbohydrate absorption in mice. Gastroenterology 144, 771–780 (2013).

    CAS  PubMed  Google Scholar 

  59. Pedersen, B. K. & Fischer, C. P. Beneficial health effects of exercise—the role of IL-6 as a myokine. Trends Pharmacol. Sci. 28, 152–156 (2007).

    CAS  PubMed  Google Scholar 

  60. Chandrasekaran, B. et al. Myocardial apelin production is reduced in humans with left ventricular systolic dysfunction. J. Card. Fail. 16, 556–561 (2010).

    CAS  PubMed  Google Scholar 

  61. Castan-Laurell, I. et al. Effect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. Eur. J. Endocrinol. 158, 905–910 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mamchaoui, K. et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet. Muscle 1, 34 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. McMahon, C. D. et al. Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension. Am. J. Physiol. Endocrinol. Metab. 285, E82–E87 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Minville, I. Castan-Laurell, A. Yart, B. Masri, and L. Casteilla for their fruitful discussions. We also specially thank all of the personnel of the ANEXPLO animal facility (Toulouse, France) and transcriptomic GeTQ plateform (Toulouse, France); J. Rouquette, head of the ITAV Imaging Service (Centre Pierre Potier, Toulouse, France); Federico S. and the NIHS flow cytometry facility (Lausanne, Switzerland). We thank J. Iacovani and J. Christensen for corrections to the article and M. Rossell for technical assistance. Mice deficient for AMPK activity (DN-AMPK) in skeletal muscles were kindly provided by the laboratory of M. J. Birnbaum (University of Pennsylvania Medical School, Philadelphia, USA). This work has been funded by INSERM (Institut National de la Santé et de la Recherche Médicale), the Région Occitanie and the Fondation de la Recherche Médicale (FRM). This project was supported in part by European funds (Fonds Européens de Développement Régional, FEDER), Toulouse Métropole, and the French Ministry of Research through the Investissement d’Avenir Infrastructures Nationales en Biologie et Santé program (ProFI, Proteomics French Infrastructure project, ANR-10-INBS-08).

Author information

Authors and Affiliations

Authors

Contributions

C.D. and P.V. conceived the study. C.V., S.L.G., A.D., O.P. and S.D. performed all animal experiments. C.V., L.L., S.K., U.L. and J.F.N. designed, performed and analyzed the regeneration experiments. C.D., C.V. and J.-P.P. performed all the western blots. C.V., A.D., O.P. and N.G. performed all the transcriptomics. V.M. and A.B. provided human cells. A.B. performed all the culture cell experiments. B.V., M.C., M.P., F.P. and S.G. were involved in human samples collection and analysis. A.C. and A.F.P. performed the hindlimb unloading experiments. M.C., K.C. and O.S. designed and performed the HPLC experiments. M.V. analyzed muscle fiber composition. E.M. participated in performing the specific muscle contraction tests. C.D. supervised the design and execution of the study, interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Cedric Dray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Text and Figures

Supplementary Tables 1 and 2 and Supplementary Figures 1–6

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinel, C., Lukjanenko, L., Batut, A. et al. The exerkine apelin reverses age-associated sarcopenia. Nat Med 24, 1360–1371 (2018). https://doi.org/10.1038/s41591-018-0131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0131-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research