Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia

Abstract

Cellular transformation is accompanied by extensive rewiring of many biological processes leading to augmented levels of distinct types of cellular stress, including proteotoxic stress. Cancer cells critically depend on stress-relief pathways for their survival. However, the mechanisms underlying the transcriptional initiation and maintenance of the oncogenic stress response remain elusive. Here, we show that the expression of heat shock transcription factor 1 (HSF1) and the downstream mediators of the heat shock response is transcriptionally upregulated in T cell acute lymphoblastic leukemia (T-ALL). Hsf1 ablation suppresses the growth of human T-ALL and eradicates leukemia in mouse models of T-ALL, while sparing normal hematopoiesis. HSF1 drives a compact transcriptional program and among the direct HSF1 targets, specific chaperones and co-chaperones mediate its critical role in T-ALL. Notably, we demonstrate that the central T-ALL oncogene NOTCH1 hijacks the cellular stress response machinery by inducing the expression of HSF1 and its downstream effectors. The NOTCH1 signaling status controls the levels of chaperone/co-chaperone complexes and predicts the response of T-ALL patient samples to HSP90 inhibition. Our data demonstrate an integral crosstalk between mediators of oncogene and non-oncogene addiction and reveal critical nodes of the heat shock response pathway that can be targeted therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HSF1 and gene members of the stress response pathway are highly expressed in human T-ALL.
Fig. 2: Genetic targeting of Hsf1 leads to eradication of established T-ALL in vivo.
Fig. 3: Identification of direct functional HSF1 targets in T-ALL.
Fig. 4: Direct regulation of the heat shock response pathway by NOTCH1.
Fig. 5: NOTCH1 signaling modulation alters the epichaperome levels.
Fig. 6: NOTCH1 signaling status correlates with epichaperome levels and predicts response to HSP90 inhibition.

Similar content being viewed by others

References

  1. Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mendillo, M. L. et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549–562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santagata, S. et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341, 1238303 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Xi, C., Hu, Y., Buckhaults, P., Moskophidis, D. & Mivechi, N. F. Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J. Biol. Chem. 287, 35646–35657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai, C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Phil. Trans. R. Soc. B 373, 20160525 (2018).

    Article  PubMed  CAS  Google Scholar 

  7. Gomez-Pastor, R. et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat. Commun. 8, 14405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, J., Labbadia, J. & Morimoto, R. I. Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol. (2017).

  9. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagel, R., Semenova, E. A. & Berns, A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep. 17, 1516–1531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gomez-Pastor, R., Burchfiel, E. T. & Thiele, D. J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 4–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Whitesell, L. & Lindquist, S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin. Ther. Targets 13, 469–478 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Belver, L. & Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16, 494–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chou, S. D., Prince, T., Gong, J. & Calderwood, S. K. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PloS One 7, e39679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cotto, J. J., Kline, M. & Morimoto, R. I. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J. Biol. Chem. 271, 3355–3358 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. USA 103, 45–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Holmberg, C. I. et al. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J. 20, 3800–3810 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu, Y. & Mivechi, N. F. Promotion of heat shock factor Hsf1 degradation via adaptor protein filamin A-interacting protein 1-like (FILIP-1L). J. Biol. Chem. 286, 31397–31408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kourtis, N. et al. FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat. Cell Biol. 17, 322–332 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tang, Z. et al. MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell 160, 729–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Westerheide, S. D., Anckar, J., Stevens, S. M. Jr, Sistonen, L. & Morimoto, R. I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323, 1063–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Vlierberghe, P. et al. ETV6 mutations in early immature human T cell leukemias. J. Exp. Med. 208, 2571–2579 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Guettouche, T., Boellmann, F., Lane, W. S. & Voellmy, R. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6, 4 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Palomero, T. et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia 20, 1279–1287 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Brandvold, K. R. & Morimoto, R. I. The chemical biology of molecular chaperones—implications for modulation of proteostasis. J. Mol. Biol. 427, 2931–2947 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aster, J. C. et al. Oncogenic forms of NOTCH1 lacking either the primary binding site for RBP-Jkappa or nuclear localization sequences retain the ability to associate with RBP-Jkappa and activate transcription. J. Biol. Chem. 272, 11336–11343 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. King, B. et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153, 1552–1566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Neil, J. et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 107, 781–785 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Roderick, J. E. et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 123, 1040–1050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao, X. et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943–5952 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiao, H. & Lis, J. T. Germline transformation used to define key features of heat-shock response elements. Science 239, 1139–1142 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Scherz-Shouval, R. et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158, 564–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taipale, M. et al. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158, 434–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grabher, C., von Boehmer, H. & Look, A. T. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 6, 347–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, H. et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl. Acad. Sci. USA 108, 14908–14913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahat, D. B., Salamanca, H. H., Duarte, F. M., Danko, C. G. & Lis, J. T. Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol. Cell 62, 63–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Solis, E. J. et al. Defining the essential function of yeast Hsf1 reveals a compact transcriptional program for maintaining eukaryotic proteostasis. Mol. Cell 63, 60–71 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ben-Bassat, H., Shlomai, Z., Kohn, G. & Prokocimer, M. Establishment of a human T-acute lymphoblastic leukemia cell line with a (16;20) chromosome translocation. Cancer Genet. Cytogenet. 49, 241–248 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Holmes, R. & Zuniga-Pflucker, J. C. The OP9-DL1 system: generation of T-lymphocytes from embryonic or hematopoietic stem cells in vitro. Cold Spring Harb. Protoc. 2009, pdbprot5156 (2009).

    Article  Google Scholar 

  44. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yatim, A. et al. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol. Cell 48, 445–458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Jonge, H. J. et al. Gene expression profiling in the leukemic stem cell-enriched CD34+ fraction identifies target genes that predict prognosis in normal karyotype AML. Leukemia 25, 1825–1833 (2011).

    Article  PubMed  CAS  Google Scholar 

  47. Fabbri, G. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208, 1389–1401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rossi, D. et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 119, 521–529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klinakis, A. et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473, 230–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fabbri, G. et al. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 114, E2911–E2919 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Rodina, A. et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538, 397–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Akahane, K. et al. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia 30, 219–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Shrestha, L., Patel, H. J. & Chiosis, G. Chemical tools to investigate mechanisms associated with HSP90 and HSP70 in disease. Cell Chem. Biol. 23, 158–172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moulick, K. et al. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat. Chem. Biol. 7, 818–826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taldone, T. et al. Synthesis of purine-scaffold fluorescent probes for heat shock protein 90 with use in flow cytometry and fluorescence microscopy. Bioorg. Med. Chem. Lett. 21, 5347–5352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Herranz, D. et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat. Med. 21, 1182–1189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, Z. et al. Stabilization of Notch1 by the Hsp90 chaperone is crucial for T-cell leukemogenesis. Clin. Cancer Res. 23, 3834–3846 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Dai, C. & Sampson, S. B. HSF1: guardian of proteostasis in cancer. Trends Cell Biol. 26, 17–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18, 345–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Le Masson, F. et al. Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol. Cell. Biol. 31, 3410–3423 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tatarek, J. et al. Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. Blood 118, 1579–1590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taldone, T. et al. Heat shock protein 70 inhibitors. 2. 2,5'-thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70. J. Med. Chem. 57, 1208–1224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jensen, L. J. et al. STRING 8—global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Gong, Y. et al. lncRNA-screen: an interactive platform for computationally screening long non-coding RNAs in large genomics datasets. BMC Genomics 18, 434 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsirigos, A., Haiminen, N., Bilal, E. & Utro, F. GenomicTools: a computational platform for developing high-throughput analytics in genomics. Bioinformatics 28, 282–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

  74. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Zhou, X. et al. The Human Epigenome Browser at Washington University. Nat. Methods 8, 989–990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  CAS  Google Scholar 

  79. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, H. et al. NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc. Natl. Acad. Sci. USA 111, 705–710 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Aifantis laboratory for discussions throughout the duration of this project; T. Papagiannakopoulos and P. Ntziachristos for critical assessment of this work; E. Christians (UPMC Univ. Paris 06, CNRS) for the Hsf1f/f mice; A. Heguy and the NYU Genome Technology Center (supported in part by National Institutes of Health (NIH)/National Cancer Institute (NCI) grant P30CA016087-30) for expertise with sequencing experiments; the NYU Histology Core (5P30CA16087-31) for assistance; C. Loomis and L. Chiriboga for immunohistochemistry experiments; C. Jamieson (UCSD) for human LICs; The ECOG-ACRIN Cancer Research Group for clinical specimens. This work has used computing resources at the High Performance Computing Facility at the NYU Medical Center. A.T. is supported by a Research Scholar Grant (RSG-15-189-01-RMC) from the American Cancer Society and a Leukemia & Lymphoma Society New Idea Award (8007-17). I.A. is supported by the NIH (R01CA133379, R01CA105129, R01CA149655, 5R01CA173636, 1R01CA194923), the NYSTEM program of the New York State Health Department (NYSTEM-N11G-255) and the Leukemia & Lymphoma Society (LLS) Translational Research Program (TRP). J.C.B. was supported by CONACyT​ (​​FOSISSS 2015-1-261848​)​ and​ ​IMSS​ (FIS/IMSS/PROT/G14/1289​). J.M. was supported by KWF BUIT2012-5358. N.K. is supported by a Human Frontiers Science Program (HFSP) Long Term Fellowship (LT000150/2013-L) and previously by a Charles H. Revson Senior Fellowship in Biomedical Science (15–31) and a European Molecular Biology Organization (EMBO) Long Term Fellowship (ALTF 850-2012).

Author information

Authors and Affiliations

Authors

Contributions

N.K. and I.A. designed the experiments and wrote the manuscript. N.K. performed most of the experiments. C.L. designed and performed bioinformatics analysis of genome-wide data. K.H., J.C.B, A.R.J., J.M. and T.T. performed experiments. Y.G. performed RNA-seq analysis. K.B. and H.H maintained the mouse colonies. L.S. provided molecular chaperones inhibitors. M.K. provided Tal1 cells. A.A.-I., E.P. and A.A.F. provided T-ALL patient expression data and patient samples. G.C. and M.L.G. provided molecular chaperones inhibitors and ideas. A.T. designed and performed bioinformatics analysis of genome-wide data and contributed ideas.

Corresponding authors

Correspondence to Nikos Kourtis or Iannis Aifantis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1 and 3

Reporting Summary

Supplementary Table 2

Notch1-IC-interacting proteins in the mouse T-ALL 720 cell line or 293T cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourtis, N., Lazaris, C., Hockemeyer, K. et al. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 24, 1157–1166 (2018). https://doi.org/10.1038/s41591-018-0105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0105-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing