Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biochemical autoregulatory gene therapy for focal epilepsy

Abstract

Despite the introduction of more than one dozen new antiepileptic drugs in the past 20 years, approximately one-third of people who develop epilepsy continue to have seizures on mono- or polytherapy1. Viral-vector-mediated gene transfer offers the opportunity to design a rational treatment that builds on mechanistic understanding of seizure generation and that can be targeted to specific neuronal populations in epileptogenic foci2. Several such strategies have shown encouraging results in different animal models, although clinical translation is limited by possible effects on circuits underlying cognitive, mnemonic, sensory or motor function. Here, we describe an autoregulatory antiepileptic gene therapy, which relies on neuronal inhibition in response to elevations in extracellular glutamate. It is effective in a rodent model of focal epilepsy and is well tolerated, thus lowering the barrier to clinical translation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mode of action and glutamate sensitivity of eGluCl.
Fig. 2: eGluCl decreases acute chemoconvulsant-induced seizures.
Fig. 3: eGluCl decreases the absolute number of seizures in a model of chronic focal neocortical epilepsy.
Fig. 4: eGluCl treatment has no effect on normal brain function.

Similar content being viewed by others

References

  1. Chen, Z., Brodie, M. J., Liew, D. & Kwan, P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 75, 279–286 (2018).

    Article  Google Scholar 

  2. Kullmann, D. M., Schorge, S., Walker, M. C. & Wykes, R. C. Gene therapy in epilepsy-is it time for clinical trials? Nat. Rev. Neurol. 10, 300–304 (2014).

    Article  CAS  Google Scholar 

  3. Kwan, P., Schachter, S. C. & Brodie, M. J. Drug-resistant epilepsy. N. Engl. J. Med. 365, 919–926 (2011).

    Article  CAS  Google Scholar 

  4. Tang, F., Hartz, A. M. S. & Bauer, B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front. Neurol. 8, 301 (2017).

    Article  Google Scholar 

  5. Perucca, P. & Gilliam, F. G. Adverse effects of antiepileptic drugs. Lancet Neurol. 11, 792–802 (2012).

    Article  CAS  Google Scholar 

  6. Ryvlin, P., Cross, J. H. & Rheims, S. Epilepsy surgery in children and adults. Lancet Neurol. 13, 1114–1126 (2014).

    Article  Google Scholar 

  7. Wykes, R. C. et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4, 161ra152 (2012).

    Article  Google Scholar 

  8. Kätzel, D., Nicholson, E., Schorge, S., Walker, M. C. & Kullmann, D. M. Chemical-genetic attenuation of focal neocortical seizures. Nat. Commun. 5, 3847 (2014).

    Article  Google Scholar 

  9. Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571 (2013).

    Article  Google Scholar 

  10. Baldassano, S. N. et al. Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings. Brain 140, 1680–1691 (2017).

    Article  Google Scholar 

  11. Buckingham, S. C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1269–1274 (2011).

    Article  CAS  Google Scholar 

  12. During, M. J. & Spencer, D. D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341, 1607–1610 (1993).

    Article  CAS  Google Scholar 

  13. Stephens, M. L. et al. Tonic glutamate in CA1 of aging rats correlates with phasic glutamate dysregulation during seizure. Epilepsia 55, 1817–1825 (2014).

    Article  CAS  Google Scholar 

  14. Cavus, I. et al. 50 Hz hippocampal stimulation in refractory epilepsy: higher level of basal glutamate predicts greater release of glutamate. Epilepsia 57, 288–297 (2016).

    Article  CAS  Google Scholar 

  15. Thomas, P. M., Phillips, J. P. & O’Connor, W. T. Hippocampal microdialysis during spontaneous intraoperative epileptiform activity. Acta Neurochir. (Wien.) 146, 143–151 (2004).

    Article  CAS  Google Scholar 

  16. Frazier, S. J., Cohen, B. N. & Lester, H. A. An engineered glutamate-gated chloride (GluCl) channel for sensitive, consistent neuronal silencing by ivermectin. J. Biol. Chem. 288, 21029–21042 (2013).

    Article  CAS  Google Scholar 

  17. Yaguchi, M. et al. Characterization of the properties of seven promoters in the motor cortex of rats and monkeys after lentiviral vector-mediated gene transfer. Hum. Gene Ther. Methods 24, 333–344 (2013).

    Article  CAS  Google Scholar 

  18. Barker-Haliski, M. & White, H. S. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb. Perspect. Med. 5, a022863 (2015).

    Article  Google Scholar 

  19. Tzingounis, A. V. & Wadiche, J. I. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat. Rev. Neurosci. 8, 935–947 (2007).

    Article  CAS  Google Scholar 

  20. Vink, C. A. et al. Eliminating HIV-1 packaging sequences from lentiviral vector proviruses enhances safety and expedites gene transfer for gene therapy. Mol. Ther. 25, 1790–1804 (2017).

    Article  CAS  Google Scholar 

  21. Mainardi, M., Pietrasanta, M., Vannini, E., Rossetto, O. & Caleo, M. Tetanus neurotoxin-induced epilepsy in mouse visual cortex. Epilepsia 53, e132–e136 (2012).

    Article  Google Scholar 

  22. Cleeren, E., Casteels, C., Goffin, K., Janssen, P. & Van Paesschen, W. Ictal perfusion changes associated with seizure progression in the amygdala kindling model in the rhesus monkey. Epilepsia 56, 1366–1375 (2015).

    Article  Google Scholar 

  23. Weir, G. A. et al. Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source. Brain 140, 2570–2585 (2017).

    Article  Google Scholar 

  24. Jaenisch, N. et al. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures. Sci. Rep. 6, 26173 (2016).

    Article  CAS  Google Scholar 

  25. Asztely, F., Erdemli, G. & Kullmann, D. M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293 (1997).

    Article  CAS  Google Scholar 

  26. Cavus, I. et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann. Neurol. 57, 226–235 (2005).

    Article  CAS  Google Scholar 

  27. Miles, R., Blaesse, P., Huberfeld, G., Wittner, L. & Kaila, K. Chloride homeostasis and GABA signaling in temporal lobe epilepsy. in Jasper’s Basic Mechanisms of the Epilepsies (eds. Noebels, J. L. et al.) (National Center for Biotechnology Information, Bethesda, MD, USA, 2012).

  28. Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Schiavo (UCL Institute of Neurology) for the gift of tetanus toxin and S. Hart (UCL Institute of Child Health) for the mouse Neuro-2a cell line. We are grateful to J. Cornford for assistance with ECoG analysis and to K. Hashemi for help optimizing wireless-transmitter use. This project was supported by the European Union’s Horizon 2020 research and innovation program (Marie Skłodowska-Curie grant agreement no. 701411 to A.L.); the Medical Research Council (MR/L01095X/1 to D.M.K., S.S. and M.C.W.); and the Wellcome Trust (095580/Z/11/Z to D.M.K.; 104033/Z/14/Z to D.M.K. and S.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.L. and D.M.K. designed all experiments and drafted the manuscript. A.L. performed in vitro electrophysiology and in vivo experiments. A.L. and Y.Q. designed, performed and analyzed in vivo behavioral experiments. Y.Q., A.L., J.P.H. and C.L.D. performed and analyzed all immunostaining experiments. A.L., Y.Q., J.P.H., C.L.D., M.C.W., S.S. and D.M.K. revised the manuscript.

Corresponding authors

Correspondence to Andreas Lieb or Dimitri M. Kullmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4

Reporting Summary

Supplementary Video 1

Representative chemoconvulsant-induced seizure

Supplementary Video 2

Representative seizure in the model of chronic focal neocortical epilepsy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieb, A., Qiu, Y., Dixon, C.L. et al. Biochemical autoregulatory gene therapy for focal epilepsy. Nat Med 24, 1324–1329 (2018). https://doi.org/10.1038/s41591-018-0103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0103-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research