Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Phenotype molding of stromal cells in the lung tumor microenvironment

Abstract

Cancer cells are embedded in the tumor microenvironment (TME), a complex ecosystem of stromal cells. Here, we present a 52,698-cell catalog of the TME transcriptome in human lung tumors at single-cell resolution, validated in independent samples where 40,250 additional cells were sequenced. By comparing with matching non-malignant lung samples, we reveal a highly complex TME that profoundly molds stromal cells. We identify 52 stromal cell subtypes, including novel subpopulations in cell types hitherto considered to be homogeneous, as well as transcription factors underlying their heterogeneity. For instance, we discover fibroblasts expressing different collagen sets, endothelial cells downregulating immune cell homing and genes coregulated with established immune checkpoint transcripts and correlating with T-cell activity. By assessing marker genes for these cell subtypes in bulk RNA-sequencing data from 1,572 patients, we illustrate how these correlate with survival, while immunohistochemistry for selected markers validates them as separate cellular entities in an independent series of lung tumors. Hence, in providing a comprehensive catalog of stromal cells types and by characterizing their phenotype and co-optive behavior, this resource provides deeper insights into lung cancer biology that will be helpful in advancing lung cancer diagnosis and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the 52,698 single cells from lung tumors and distal non-malignant lung samples.
Fig. 2: Endothelial cell clusters.
Fig. 3: Fibroblast clusters in lungs and lung tumors.
Fig. 4: B-cell and myeloid-like cell clusters in lungs and lung tumors.
Fig. 5: T-cell clusters in lungs and lung tumors.
Fig. 6: Distribution of stromal cells in tumor samples and their role as markers of patient survival.

Similar content being viewed by others

References

  1. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albini, A. & Sporn, M. B. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer 7, 139 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 49, 6449–6465 (1989).

    CAS  PubMed  Google Scholar 

  4. Eberhard, A. et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: Implications for antiangiogenic tumor therapies. Cancer Res. 60, 1388–1393 (2000).

    CAS  PubMed  Google Scholar 

  5. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Sugimoto, H., Mundel, T. M., Kieran, M. W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5, 1640–1646 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765.e717 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 389, 255–265 (2017).

    Article  PubMed  Google Scholar 

  9. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 1823–1833 (2016).

    Article  CAS  Google Scholar 

  10. Reck, M. et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 15, 143–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baudino, T. A. et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 16, 2530–2543 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cantelmo, A. R. et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30, 968–985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arany, Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451, 1008–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-presenting cells: Can anything replace a dendritic cell? Nat. Rev. Immunol. 14, 719–730 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aibar, S. et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 14, 1083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, N. et al. Adenovirus-mediated overexpression of c-Jun and c-Fos induces intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 19, 2078–2084 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Gelse, K., Poschl, E. & Aigner, T. Collagens—Structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Q., Schwarz, J., Bucana, C. & Olson, E. N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, J., Webb, R., Richardson, J. A. & Olson, E. N. MyoR: A muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD. Proc. Natl. Acad. Sci. USA 96, 552–557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Gunthner, R. & Anders, H. J. Interferon-regulatory factors determine macrophage phenotype polarization. Mediat. Inflamm. 2013, 731023 (2013).

    Article  CAS  Google Scholar 

  33. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Y. et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391.e39 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shaykhiev, R. et al. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer. Am. J. Respir. Cell. Mol. Biol. 49, 418–425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buffa, F. M., Harris, A. L., West, C. M. & Miller, C. J. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br. J. Cancer 102, 428–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishibashi, M. et al. CD200-positive cancer associated fibroblasts augment the sensitivity of Epidermal Growth Factor Receptor mutation-positive lung adenocarcinomas to EGFR Tyrosine kinase inhibitors. Sci. Rep. 7, 46662 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Djureinovic, D. et al. Profiling cancer testis antigens in non-small-cell lung cancer. JCI Insight 1, e86837 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Director’s Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma. et al. Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study. Nat. Med. 14, 822–827 (2008).

    Article  CAS  Google Scholar 

  42. Clevers, H. et al. What is your conceptual definition of ‘cell type’ in the context of a mature organism? Cell Syst. 4, 255–259 (2017).

    Article  CAS  Google Scholar 

  43. Zhang, Y. & Ertl, H. C. Starved and asphyxiated: How can CD8+ T cells within a tumor microenvironment prevent tumor progression. Front. Immunol. 7, 32 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Horn, J. L. A rationale and test for the number of factors in factor analysis. Psychometrika 30, 179–185 (1965).

    Article  CAS  PubMed  Google Scholar 

  45. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  46. Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537, 63–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Whitlock, M. C. Combining probability from independent tests: The weighted Z‐method is superior to Fisher’s approach. J. Evol. Biol. 18, 1368–1373 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Gaude, E. & Frezza, C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat. Commun. 7, 13041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).

    Article  Google Scholar 

  50. Kiselev, V. Y. et al. SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin, P., Troup, M. & Ho, J. W. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18, 59 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Wauters, E. et al. DNA methylation profiling of non-small cell lung cancer reveals a COPD-driven immune-related signature. Thorax 70, 1113–1122 (2015).

    Article  PubMed  Google Scholar 

  54. Kristofer, D. et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell https://doi.org/10.1016/j.cell.2018.05.057 (2018).

Download references

Acknowledgements

We thank M. De Waegeneer, T. Van Brussel, G. Peuteman, E. Vanderheyden and B. Tembuyser for technical assistance. This work was supported by a VIB TechWatch Grant to D.L. and B.T., Foundation Against Cancer grants to S.Aerts (2016-070) and E.W., ERC Consolidator Grants to S.Aerts (724226_cis-CONTROL) and D.L. (CHAMELEON), Funds for Research - Flanders grants to H.D. (1701018N) and D.L. (G065615N), an Austrian Science Fund (FWF) grant to A.P. (J3730-B26) and KU Leuven grants to D.L. and S.Aerts (PFV/10/016 SymBioSys), and to B.T. (BOFZAP).

Author information

Authors and Affiliations

Authors

Contributions

D.L. and B.T. designed and supervised the study and wrote the manuscript. E.W. supervised sample collection and clinical annotation, with important help from H.D., A.P., K.V.d.E., B.W., E.V., P.D.L. and J.V. B.T. performed data analysis, with significant contributions from B.B., S.Ai., S.Ae. and A.B. D.N. and B.T. performed immunohistofluorescence analyses. O.B., A.L., P.C. and S.Ae. contributed critical data interpretation. All of the authors have read or provided comments on the manuscript.

Corresponding authors

Correspondence to Diether Lambrechts or Bernard Thienpont.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20 and Supplementary Tables 1–3

Reporting Summary

Supplementary Table 4

Gene expression data for all 52 clusters

Supplementary Table 5

Gene expression data for tumor-derived and non-malignant lung-tissue-derived cells, per cluster having >100 cells from both sources

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrechts, D., Wauters, E., Boeckx, B. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24, 1277–1289 (2018). https://doi.org/10.1038/s41591-018-0096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0096-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer