Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate

Abstract

The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell–derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T cells are paracrine targets of R-2-HG.
Fig. 2: R-2-HG directly impairs activation of T cells.
Fig. 3: Differential expression profile of intratumoral T cells associates with IDH1 status.
Fig. 4: R-2-HG interferes with calcium-dependent transcriptional activity of NFAT.
Fig. 5: R-2-HG inhibits ATP-dependent TCR signaling and polyamine biosynthesis in T cells.
Fig. 6: R-2-HG impairs T cell antitumor immunity.

Similar content being viewed by others

References

  1. Yang, M., Soga, T. & Pollard, P. J. Oncometabolites: Linking altered metabolism with cancer. J. Clin. Invest. 123, 3652–3658 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Erez, A. & DeBerardinis, R. J. Metabolic dysregulation in monogenic disorders and cancer—finding method in madness. Nat. Rev. Cancer 15, 440–448 (2015).

    CAS  PubMed  Google Scholar 

  3. Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    CAS  PubMed  Google Scholar 

  4. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mullen, A. R. & DeBerardinis, R. J. Genetically-defined metabolic reprogramming in cancer. Trends Endocrinol. Metab. 23, 552–559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bardella, C. et al. Expression of Idh1R132H in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 30, 578–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaelin, W. G.Jr. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 76, 335–345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Waitkus, M. S., Diplas, B. H. & Yan, H. Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol. 18, 16–26 (2016).

    CAS  PubMed  Google Scholar 

  11. Leonardi, R., Subramanian, C., Jackowski, S. & Rock, C. O. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J. Biol. Chem. 287, 14615–14620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Grassian, A. R. et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 74, 3317–3331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sasaki, M. et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 26, 2038–2049 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tateishi, K. et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28, 773–784 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Reitman, Z. J. et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc. Natl Acad. Sci. USA 108, 3270–3275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Esmaeili, M. et al. IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res. 74, 4898–4907 (2014).

    CAS  PubMed  Google Scholar 

  17. Chan, S. M. et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat. Med. 21, 178–184 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu, X. et al. 2-Hydroxyglutarate inhibits ATP synthase and mTOR signaling. Cell Metab. 22, 508–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell 172, 90–105 (2018).

    CAS  PubMed  Google Scholar 

  20. Fathi, A. T. et al. Elevation of urinary 2-hydroxyglutarate in IDH-mutant glioma. Oncologist 21, 214–219 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schumacher, T. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512, 324–327 (2014).

    CAS  PubMed  Google Scholar 

  22. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    CAS  PubMed  Google Scholar 

  24. Pusch, S. et al. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol. 133, 629–644 (2017).

    CAS  PubMed  Google Scholar 

  25. Losman, J. A. & Kaelin, W. G.Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Muhlhausen, C. et al. Membrane translocation of glutaric acid and its derivatives. J. Inherit. Metab. Dis. 31, 188–193 (2008).

    CAS  PubMed  Google Scholar 

  28. Pajor, A. M. & Randolph, K. M. Inhibition of the Na+/dicarboxylate cotransporter by anthranilic acid derivatives. Mol. Pharmacol. 72, 1330–1336 (2007).

    CAS  PubMed  Google Scholar 

  29. Kolker, S. et al. NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in d-2-hydroxyglutaric aciduria. Eur. J. Neurosci. 16, 21–28 (2002).

    PubMed  Google Scholar 

  30. Latini, A. et al. Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol. Genet. Metab. 86, 188–199 (2005).

    CAS  PubMed  Google Scholar 

  31. Schumacher, T., Bunse, L., Wick, W. & Platten, M. Mutant IDH1: an immunotherapeutic target in tumors. Oncoimmunology 3, e974392 (2014).

    PubMed  Google Scholar 

  32. Brown, C. E. et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Duncan, C. G. et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res. 22, 2339–2355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wick, W. et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J. Clin. Oncol. 27, 5874–5880 (2009).

    CAS  PubMed  Google Scholar 

  35. Wick, W. et al. Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro Oncol. 18, 1529–1537 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Amankulor, N. M. et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev. 31, 774–786 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kohanbash, G. et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Invest. 127, 1425–1437 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells. Immunity 42, 265–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T Cell responses. Cell 162, 1217–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ledderose, C. et al. Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling. J. Biol. Chem. 289, 25936–25945 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    CAS  PubMed  Google Scholar 

  43. Chan, A. Y. et al. Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J. Biol. Chem. 283, 24194–24201 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Passariello, C. L. et al. Evidence that AMP-activated protein kinase can negatively modulate ornithine decarboxylase activity in cardiac myoblasts. Biochim. Biophys. Acta 1823, 800–807 (2012).

    CAS  PubMed  Google Scholar 

  45. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ray, R. M., Bavaria, M. & Johnson, L. R. Interaction of polyamines and mTOR signaling in the synthesis of antizyme (AZ). Cell Signal. 27, 1850–1859 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bunse, L. et al. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J. Clin. Invest. 125, 593–606 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Pellegatta, S. et al. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol. Commun. 3, 4 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Reardon, D. A. et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res. 4, 124–135 (2016).

    CAS  PubMed  Google Scholar 

  50. Chen, J. Y. et al. The oncometabolite R-2-hydroxyglutarate activates NF-κB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells. Sci. Rep. 6, 32428 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    CAS  PubMed  Google Scholar 

  52. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature 540, 236–241 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Olivera-Bravo, S. et al. Striatal neuronal death mediated by astrocytes from the Gcdh−/− mouse model of glutaric acidemia type I. Hum. Mol. Genet. 24, 4504–4515 (2015).

    CAS  PubMed  Google Scholar 

  54. Karlstaedt, A. et al. Oncometabolite d-2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc. Natl Acad. Sci. USA 113, 10436–10441 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Suzuki, H. et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat. Genet. 47, 458–468 (2015).

    CAS  PubMed  Google Scholar 

  56. Harrington, L. E., Janowski, K. M., Oliver, J. R., Zajac, A. J. & Weaver, C. T. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452, 356–360 (2008).

    CAS  PubMed  Google Scholar 

  57. Campos, B. et al. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin. Cancer Res. 16, 2715–2728 (2010).

    CAS  PubMed  Google Scholar 

  58. Kumai, T. et al. Optimization of peptide vaccines to induce robust antitumor CD4 T-cell responses. Cancer Immunol. Res. 5, 72–83 (2017).

    CAS  PubMed  Google Scholar 

  59. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    CAS  PubMed  Google Scholar 

  60. Buescher, J. M., Moco, S., Sauer, U. & Zamboni, N. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412 (2010).

    CAS  PubMed  Google Scholar 

  61. Balss, J. et al. Enzymatic assay for quantitative analysis of (D)-2-hydroxyglutarate. Acta Neuropathol. 124, 883–891 (2012).

    CAS  PubMed  Google Scholar 

  62. Barber, T. W., Brockway, J. A. & Higgins, L. S. The density of tissues in and about the head. Acta Neurol. Scand. 46, 85–92 (1970).

    CAS  PubMed  Google Scholar 

  63. Sahm, F. et al. Detection of 2-hydroxyglutarate in formalin-fixed paraffin-embedded glioma specimens by gas chromatography/mass spectrometry. Brain Pathol. 22, 26–31 (2012).

    CAS  PubMed  Google Scholar 

  64. Burstenbinder, K., Rzewuski, G., Wirtz, M., Hell, R. & Sauter, M. The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J. 49, 238–249 (2007).

    PubMed  Google Scholar 

  65. Shi, W., Oshlack, A. & Smyth, G. K. Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Res. 38, e204 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).

    Google Scholar 

  67. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–462 (2016).

    CAS  PubMed  Google Scholar 

  69. Hummel, M., Meister, R. & Mansmann, U. GlobalANCOVA: exploration and assessment of gene group effects. Bioinformatics 24, 78–85 (2008).

    CAS  PubMed  Google Scholar 

  70. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  71. Sahm, F. et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 18, 682–694 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the DKFZ Light Microscopy Facility, the microarray unit of the DKFZ Genomics and Proteomics Core Facility, the Transgenic Service of the Center for Preclinical Research, DKFZ, and the DKFZ–Bayer Alliance. We thank the Metabolomics Core Technology Platform of the Excellence Cluster CellNetworks for support with UPLC-based metabolite quantification. The results published here are in part based on data generated by the TCGA Research Network: http://cancergenome.nih.gov/. A2DR1 mice were provided by Institute Pasteur. We thank S. Kircher for flow cytometric analyses; H.Y. Ngyuen, L. Dörner, K. Rauschenbach, and M. Fischer for technical support; and J. Jung for graphics design. This work was supported by the epigenetics@dkfz program to L.B., the DKFZ-MOST program (project number 2526) and the Helmholtz Program Immunology and Inflammation, the Dr. Rolf M. Schwiete Foundation and the German Research Foundation (DFG) (FOR2289: PL315/3-1), the Sonderförderlinie ‘Neuroinflammation’ of the Ministry of Science of Baden Württemberg and the German Ministry of Education and Science (National Center for Tumor Diseases Heidelberg NCT 3.0 program ‘Precision immunotherapy of brain tumors’ and the DKTK program) to M.Pl. the Joint Funding Program MGH-Heidelberg Alliance in Neuro-Oncology to M.Pl. and M.S., the Wilhelm Sander Foundation (2012.118.1) and the German Cancer Aid (70112399) to M.Pl. and A.v.D., the German Cancer Aid (110624) to W.W., the ZUK 49/2 from the DFG to G.P., FOR2289 to B.A.N. and D.A., SFB894 to B.A.N., and the German Cancer Aid to S.T.. L.B. and M.F. are members of the MD/PhD program at Heidelberg University. L.B. was funded by Heidelberg Medical Faculty. T.B., K.S., J.K.S., and M.Ki. are supported by the Helmholtz International Graduate School, T.B. is supported by the Medical Faculty and University Hospital Mannheim. F.S. is supported by a postdoctoral fellowship of the University Hospital Heidelberg. B.W. is supported by the Faculty of Medicine of the Technical University of Munich (KKF grant). E.G. is supported by a Marie-Curie fellowship.

Author information

Authors and Affiliations

Authors

Contributions

L.B., S.P., and T.B. designed and performed experiments, analyzed data, and wrote the paper. F.S. and A.v.D. provided glioma tissue, determined IDH1 status, provided tissue stainings, and performed 850 k methylation arrays. K.S., M.F., M.Ki., A.v.L., and S.K.-B. performed in vitro experiments. J.K.S., M.Kr., and I.O. performed in vivo experiments. D.A. and B.A.N. performed calcium and respiration measurements. E.G., M.B., and R.H. performed genetic modification of cell lines. K.D. analyzed primary human tissue. C.N., M.L.S., S.U., and K.B. were involved in TIL processing. T.K. and D.S. analyzed RNA-seq data. A.S.B. and M.Pr. provided glioma tissue, determined IDH1 status, and provided immunohistochemistry stainings. K.M., M.S., D.Z., B.N., and M.D. performed metabolomics and interpreted data. B.W. performed statistical and TCGA analyses. M.O.B. performed magnetic resonance imaging. R.A.-A. and S.T. performed epigenetic profiling. J.M. and A.H. performed RNA-seq. G.P. performed adenosine phosphate and polyamine measurements. M.W. provided glioma tissues and was involved in data interpretation. M.N.-O., N.T., M.C.B., P.N.H., M.R., D.P.C., K.H.P., and D.H. provided glioma tissue. A.B. performed KEGG pathway analyses. J.E. and J.O. performed R-2-HG measurements. C.H.-M. provided the primary glioma cell line. S.K. and H.H.-S. interpreted data and provided BAY1436032. W.W. was involved in study design and data interpretation. M.Pl. conceptualized the study, interpreted data, and wrote the paper.

Corresponding author

Correspondence to Michael Platten.

Ethics declarations

Competing interests

M.Pl., W.W., and T.B. are inventors on a patent application entitled ‘Means and methods for treating or diagnosing IDH1R132H mutant-positive cancers’ (WO 2013/102641 A1, PCT/EP2013/050048). S.P. and A.v.D. are eligible to royalties as co-inventors of BAY 1436032 and are patent holders of ‘Means and methods for the determination of (D)-2-hydroxyglutarate (D2HG)’ (WO2013127997A1). This patent is under the administrative supervision of the DKFZ technology transfer office. K.M., M.S., D.Z., B.N., and M.D. are full-time employees of Agios. S.K. and H.H.S. are full-time employees of Bayer. The other authors declare no conflict of interest. Requests for materials should be addressed to m.platten@dkfz.de.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–5

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunse, L., Pusch, S., Bunse, T. et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 24, 1192–1203 (2018). https://doi.org/10.1038/s41591-018-0095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0095-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer