Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metformin reverses established lung fibrosis in a bleomycin model

An Author Correction to this article was published on 13 August 2018

This article has been updated

Abstract

Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2,3,4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct patterns of AMPK activity in lung epithelial cells and myofibroblasts of human individuals with IPF.
Fig. 2: AMPK activation reduces the levels of ECM proteins in TGF-β1-treated fibroblasts.
Fig. 3: Effects of AMPK activation on mitochondrial bioenergetics and TGF-β1-mediated resistance to apoptosis in lung fibroblasts.
Fig. 4: Metformin accelerates resolution of bleomycin-induced lung fibrosis.

Similar content being viewed by others

Change history

  • 13 August 2018

    In the version of this article originally published, a grant was omitted from the Acknowledgements section. The following sentence should have been included: “R.B.M. was supported by a Department of Veterans Affairs Merit Award (5I01BX003272).” The error has been corrected in the HTML and PDF versions of this article.

References

  1. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).

    PubMed  Google Scholar 

  4. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    CAS  PubMed  Google Scholar 

  5. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Beers, M. F. & Morrisey, E. E. The three R’s of lung health and disease: repair, remodeling, and regeneration. J. Clin. Invest. 121, 2065–2073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Thannickal, V. J., Zhou, Y., Gaggar, A. & Duncan, S. R. Fibrosis: ultimate and proximate causes. J. Clin. Invest. 124, 4673–4677 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Duffield, J. S., Lupher, M., Thannickal, V. J. & Wynn, T. A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013).

    CAS  PubMed  Google Scholar 

  9. Bueno, M. et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Invest. 125, 521–538 (2015).

    PubMed  Google Scholar 

  10. Kobayashi, K. et al. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J. Immunol. 197, 504–516 (2016).

    CAS  PubMed  Google Scholar 

  11. Bernard, K. et al. Metabolic reprogramming is required for myofibroblast contractility and differentiation. J. Biol. Chem. 290, 25427–25438 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramos, C. et al. Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am. J. Respir. Cell Mol. Biol. 24, 591–598 (2001).

    CAS  PubMed  Google Scholar 

  13. Romero, Y. et al. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell 15, 1103–1112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ashley, S. L. et al. Targeting inhibitor of apoptosis proteins protects from bleomycin-induced lung fibrosis. Am. J. Respir. Cell Mol. Biol. 54, 482–492 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hecker, L. et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci. Transl. Med. 6, 231ra247 (2014).

    Google Scholar 

  16. Inoki, K., Kim, J. & Guan, K. L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381–400 (2012).

    CAS  PubMed  Google Scholar 

  17. Shaw, R. J. Metformin trims fats to restore insulin sensitivity. Nat. Med. 19, 1570–1572 (2013).

    CAS  PubMed  Google Scholar 

  18. Riera, C. E. & Dillin, A. Can aging be ‘drugged’? Nat. Med. 21, 1400–1405 (2015).

    CAS  PubMed  Google Scholar 

  19. Finkel, T. The metabolic regulation of aging. Nat. Med. 21, 1416–1423 (2015).

    CAS  PubMed  Google Scholar 

  20. Burkewitz, K., Zhang, Y. & Mair, W. B. AMPK at the nexus of energetics and aging. Cell Metab. 20, 10–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Salminen, A. & Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 11, 230–241 (2012).

    CAS  PubMed  Google Scholar 

  22. Park, C. S. et al. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase. Biochem. Pharmacol. 84, 1660–1670 (2012).

    CAS  PubMed  Google Scholar 

  23. Liu, Z. et al. AMP-activated protein kinase and glycogen synthase kinase 3β modulate the severity of sepsis-induced lung injury. Mol. Med. 21, 937–950 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sato, N. et al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir. Res. 17, 107 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Mishra, R. et al. AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J. Biol. Chem. 283, 10461–10469 (2008).

    CAS  PubMed  Google Scholar 

  26. Thakur, S. et al. Activation of AMP-activated protein kinase prevents TGF-β1-induced epithelial-mesenchymal transition and myofibroblast activation. Am. J. Pathol. 185, 2168–2180 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, J. Y., Oh, M. A., Kim, W. H., Sohn, H. Y. & Park, S. I. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J. Cell Physiol. 227, 1081–1089 (2012).

    CAS  PubMed  Google Scholar 

  28. Li, L. et al. Metformin attenuates gefitinib-induced exacerbation of pulmonary fibrosis by inhibition of TGF-β signaling pathway. Oncotarget 6, 43605–43619 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Park, I. H. et al. Metformin reduces TGF-β1-induced extracellular matrix production in nasal polyp-derived fibroblasts. Otolaryngol. Head Neck Surg. 150, 148–153 (2014).

    PubMed  Google Scholar 

  30. Kottmann, R. M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-beta. Am. J. Respir. Crit. Care Med. 186, 740–751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    CAS  PubMed  Google Scholar 

  32. Parsons, M. J. & Green, D. R. Mitochondria in cell death. Essays Biochem. 47, 99–114 (2010).

    CAS  PubMed  Google Scholar 

  33. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    CAS  PubMed  Google Scholar 

  34. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  35. Spoden, G. A. et al. Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Exp. Cell Res. 315, 2765–2774 (2009).

    CAS  PubMed  Google Scholar 

  36. Horowitz, J. C. et al. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-β1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J. Biol. Chem. 279, 1359–1367 (2004).

    CAS  PubMed  Google Scholar 

  37. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    CAS  PubMed  Google Scholar 

  38. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    CAS  PubMed  Google Scholar 

  39. Yu, G. et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat. Med. 24, 39–49 (2018).

    CAS  PubMed  Google Scholar 

  40. Jiang, S. et al. Mitochondria and AMP-activated protein kinase-dependent mechanism of efferocytosis. J. Biol. Chem. 288, 26013–26026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jian, M. Y., Alexeyev, M. F., Wolkowicz, P. E., Zmijewski, J. W. & Creighton, J. R. Metformin-stimulated AMPK-α1 promotes microvascular repair in acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 305, L844–855 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hecker, L. et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 15, 1077–1081 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang, S. et al. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury. J. Immunol. 192, 4795–4803 (2014).

    CAS  PubMed  Google Scholar 

  44. Franco-Barraza, J., Beacham, D. A., Amatangelo, M. D., & Cukierman, E. Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr. Protoc. Cell Biol. 71, 10.9.1–10.9.34 (2016).

    Google Scholar 

  45. Hill, B. G. et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 393, 1485–1512 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Graham, L. & Orenstein, J.M. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nat. Protoc. 2, 2439–2450 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Viollet (INSERM) and G. Shailendra (Henry Ford Health System) for providing AMPK α1/2−/− MEFs and AMPKα1−/− mice. The authors thank Y. Liu (Medicine, UAB) for technical support, and J. Creighton (Anesthesiology, UAB) and the Neuroscience Molecular Detection and Stereology Core P30 NS047466 (UAB) for help with lung tissue samples/processing. This work was supported in part by the National Institutes of Health (NIH, HL107585), the US Department of Defense (W81XWH-17-1-0577) and the Pulmonary, Allergy and Critical Care Medicine (UAB) Translational Program for ARDS grants to J.W.Z. V.J.T. was supported by NIH grants P01 HL114470 and R01 AG046210, and a Department of Veterans Affairs Merit Award I01BX003056. Su.R. was supported by NIH K08 (HL135399). V.D.-U. received support from UAB Nathan Shock Center (P30 AG 050886). R.B.M. was supported by a Department of Veterans Affairs Merit Award (5I01BX003272).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design was provided by V.J.T. and J.W.Z. Experiments, data analysis and interpretation were carried out by Su.R., S.J., D.W.P., N.B.B., K.B., J.D., A.A.Z., R.B.M., M.L.L., Sa.R., E.A., V.D.-U., V.J.T. and J.W.Z. Drafting and revision of the manuscript was carried out by Su.R., V.J.T. and J.W.Z.

Corresponding authors

Correspondence to Victor J. Thannickal or Jaroslaw W. Zmijewski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangarajan, S., Bone, N.B., Zmijewska, A.A. et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med 24, 1121–1127 (2018). https://doi.org/10.1038/s41591-018-0087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0087-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing