Interleukin-2 (IL-2) has been shown to suppress immune pathologies by preferentially expanding regulatory T cells (Tregs). However, this therapy has been limited by off-target complications due to pathogenic cell expansion. Recent efforts have been focused on developing a more selective IL-2. It is well documented that certain anti-mouse IL-2 antibodies induce conformational changes that result in selective targeting of Tregs. We report the generation of a fully human anti-IL-2 antibody, F5111.2, that stabilizes IL-2 in a conformation that results in the preferential STAT5 phosphorylation of Tregs in vitro and selective expansion of Tregs in vivo. When complexed with human IL-2, F5111.2 induced remission of type 1 diabetes in the NOD mouse model, reduced disease severity in a model of experimental autoimmune encephalomyelitis and protected mice against xenogeneic graft-versus-host disease. These results suggest that IL-2–F5111.2 may provide an immunotherapy to treat autoimmune diseases and graft-versus-host disease.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Morgan, D. A., Ruscetti, F. W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007–1008 (1976).

  2. 2.

    Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

  3. 3.

    Liao, W., Lin, J.-X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

  4. 4.

    Malek, T. R. & Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153–165 (2010).

  5. 5.

    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

  6. 6.

    Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).

  7. 7.

    Taniguchi, T. The IL-2/IL-2 receptor system: A current overview. Cell 73, 5–8 (1993).

  8. 8.

    Arkin, M. R. et al. Binding of small molecules to an adaptive protein–protein interface. Proc. Natl Acad. Sci. USA 100, 1603–1608 (2003).

  9. 9.

    Rickert, M., Wang, X., Boulanger, M. J., Goriatcheva, N. & Garcia, K. C. The structure of interleukin-2 complexed with its alpha receptor. Science 308, 1477–1480 (2005).

  10. 10.

    Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

  11. 11.

    Yu, A., Zhu, L., Altman, N. H. & Malek, T. R. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30, 204–217 (2009).

  12. 12.

    Brusko, T. M., Putnam, A. L. & Bluestone, J. A. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol. Rev. 223, 371–390 (2008).

  13. 13.

    Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Immunity 17, 167–178 (2002).

  14. 14.

    London, N. R. et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci. Transl. Med. 2, 23ra19 (2010).

  15. 15.

    Ferrara, J. L. M. Cytokine dysregulation as a mechanism of graft versus host disease. Curr. Opin. Immunology 5, 794–799 (1993).

  16. 16.

    Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 370, 786–786 (2014).

  17. 17.

    Yu, A. et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms support the use of low-dose IL-2 therapy in Type-1 diabetes. Diabetes 64, 2172–2183 (2015).

  18. 18.

    He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

  19. 19.

    Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

  20. 20.

    Von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

  21. 21.

    Hartemann, A. et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 1, 295–305 (2013).

  22. 22.

    Matsuoka, K.-I. et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci. Transl. Med. 5, 179ra43 (2013).

  23. 23.

    Arenas-Ramirez, N., Woytschak, J. & Boyman, O. Interleukin-2: biology, design and application. Trends Immunol. 36, 763–777 (2015).

  24. 24.

    Long, S. A. et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61, 2340–2348 (2012).

  25. 25.

    Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

  26. 26.

    Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody–cytokine immune complexes. Science 311, 1924–1927 (2006).

  27. 27.

    Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015).

  28. 28.

    Arenas-Ramirez, N. et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl. Med. 8, 367ra166 (2016).

  29. 29.

    Yang, J. C. et al. The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. A phase I study and a randomized prospective study comparing IL-2 alone versus IL-2 combined with PEG-IL-2. Cancer 76, 687–694 (1995).

  30. 30.

    Wu, K. et al. Short-term intratracheal use of PEG-modified IL-2 and glucocorticoid persistently alleviates asthma in a mouse model. Sci. Rep. 6, 31562 (2016).

  31. 31.

    Jafari, R., Zolbanin, N. M., Rafatpanah, H., Majidi, J. & Kazemi, T. Fc-fusion proteins in therapy: an updated view. Curr. Med. Chem. 24, 1228–1237 (2017).

  32. 32.

    Finkelman, F. D. et al. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J. Immunol. 151, 1235–1244 (1993).

  33. 33.

    Spangler, J. B. et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42, 815–825 (2015).

  34. 34.

    Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

  35. 35.

    Putnam, A. L. et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58, 652–662 (2009).

  36. 36.

    Grinberg-Bleyer, Y. et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J. Exp. Med. 207, 1871–1878 (2010).

  37. 37.

    Hannon, M. et al. Infusion of clinical-grade enriched regulatory T cells delays experimental xenogeneic graft-versus-host disease. Transfusion 54, 353–363 (2014).

  38. 38.

    Jamieson, A. M. et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17, 19–29 (2002).

  39. 39.

    Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

  40. 40.

    Dokun, A. O. et al. Specific and nonspecific NK cell activation during virus infection. Nat. Immunol. 2, 951–956 (2001).

  41. 41.

    Krieg, C., Letourneau, S., Pantaleo, G. & Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl Acad. Sci. USA 107, 11906–11911 (2010).

  42. 42.

    Létourneau, S. et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc. Natl Acad. Sci. USA 107, 2171–2176 (2010).

  43. 43.

    Webster, K. E. et al. In vivo expansion of T reg cells with IL-2–mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 206, 751–760 (2009).

  44. 44.

    Lee, S.-Y. et al. Interleukin-2/anti-interleukin-2 monoclonal antibody immune complex suppresses collagen-induced arthritis in mice by fortifying interleukin-2/STAT5 signalling pathways. Immunology 137, 305–316 (2012).

  45. 45.

    Liu, R. et al. Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur. J. Immunol. 40, 1577–1589 (2010).

  46. 46.

    Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

  47. 47.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

  48. 48.

    Wang, X., Rickert, M. & Garcia, K. C. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310, 1159–1163 (2005).

  49. 49.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

  50. 50.

    Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

  51. 51.

    Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

Download references


We thank Pfizer for funding this study and participating in experiments and discussion, and the entire laboratory of J.A.B. and members of the laboratory of K.C.G. for support. In particular, we thank F. Van Gool and M. DuPage from the Bluestone laboratory for insightful discussions, D. Samuel from CTI-Pfizer for antibodies and protein preparation and UCSF Flow Core for its excellent technical assistance. We would also like to thank all of the healthy donors involved in this study.

Author information

Author notes

  1. These authors jointly supervised this work: Natasha K. Crellin, Isaac J. Rondon, Jeffrey A. Bluestone.


  1. UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA

    • Eleonora Trotta
    • , Stephanie L. Silveria
    •  & Jeffrey A. Bluestone
  2. Centers for Therapeutic Innovation, Pfizer Inc., San Francisco, CA, USA

    • Paul H. Bessette
    • , Lauren K. Ely
    • , Natasha K. Crellin
    •  & Isaac J. Rondon
  3. Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, USA

    • Kevin M. Jude
    •  & K. Christopher Garcia
  4. Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA

    • Kevin M. Jude
    •  & K. Christopher Garcia
  5. Department of Pediatric Immunology, Allergy and Rheumatology, University of Houston, Houston, TX, USA

    • Duy T. Le
  6. BioElectron Technology Corporation, Mountain View, CA, USA

    • Charles R. Holst
  7. Pandion Therapeutics, Cambridge, MA, USA

    • Anthony Coyle
  8. Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA

    • Marc Potempa
    •  & Lewis L. Lanier
  9. Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA

    • K. Christopher Garcia
  10. Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA

    • Jeffrey A. Bluestone


  1. Search for Eleonora Trotta in:

  2. Search for Paul H. Bessette in:

  3. Search for Stephanie L. Silveria in:

  4. Search for Lauren K. Ely in:

  5. Search for Kevin M. Jude in:

  6. Search for Duy T. Le in:

  7. Search for Charles R. Holst in:

  8. Search for Anthony Coyle in:

  9. Search for Marc Potempa in:

  10. Search for Lewis L. Lanier in:

  11. Search for K. Christopher Garcia in:

  12. Search for Natasha K. Crellin in:

  13. Search for Isaac J. Rondon in:

  14. Search for Jeffrey A. Bluestone in:


E.T., J.A.B., N.K.C. and I.J.R. designed the study; E.T., P.H.B., S.L.S., L.K.E., D.T.L. and C.R.H. performed experiments in vitro and in vivo with antibodies; M.P. performed experiments with MCMV; K.M.J. performed crystal structure analysis of F5111; L.L.L., K.C.G. and A.C. provided conceptual advice; E.T., J.A.B., N.K.C. and I.J.R. wrote the manuscript.

Competing interests

CTI-Pfizer funded this study. E.T., P.H.B., L.K.E., N.K.C., J.A.B. and I.J.R. are co-inventors on a patent application filed by CTI-Pfizer and UCSF incorporating discoveries described in the manuscript.

Corresponding author

Correspondence to Jeffrey A. Bluestone.

Supplementary information

About this article

Publication history






Further reading