Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism

Abstract

Interleukin-2 (IL-2) has been shown to suppress immune pathologies by preferentially expanding regulatory T cells (Tregs). However, this therapy has been limited by off-target complications due to pathogenic cell expansion. Recent efforts have been focused on developing a more selective IL-2. It is well documented that certain anti-mouse IL-2 antibodies induce conformational changes that result in selective targeting of Tregs. We report the generation of a fully human anti-IL-2 antibody, F5111.2, that stabilizes IL-2 in a conformation that results in the preferential STAT5 phosphorylation of Tregs in vitro and selective expansion of Tregs in vivo. When complexed with human IL-2, F5111.2 induced remission of type 1 diabetes in the NOD mouse model, reduced disease severity in a model of experimental autoimmune encephalomyelitis and protected mice against xenogeneic graft-versus-host disease. These results suggest that IL-2–F5111.2 may provide an immunotherapy to treat autoimmune diseases and graft-versus-host disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of human anti-IL-2 antibodies with different receptor inhibition and human Treg pSTAT5 signaling profiles.
Fig. 2: Identification of a novel anti-human IL-2 antibody that inhibits effector T cell responses to IL-2 but does not block Treg pSTAT5.
Fig. 3: Antibody F5111.2 inhibits upregulation of IL-2-induced proteins in CD8+ T cells but not Tregs in vitro.
Fig. 4: The IL-2–F5111 complex structure reveals that the F5111 Fab obstructs the IL-2Rβ-binding site on IL-2.
Fig. 5: The F5111.2–hIL-2 complex preferentially increases Tregs in an in vivo NSG expansion model.
Fig. 6: The F5111.2–hIL-2 complex increases the Treg proportion and reinforces the Treg phenotype in inflamed pancreas leading to diabetes remission in NOD mice.

Similar content being viewed by others

References

  1. Morgan, D. A., Ruscetti, F. W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007–1008 (1976).

    Article  PubMed  CAS  Google Scholar 

  2. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article  PubMed  CAS  Google Scholar 

  3. Liao, W., Lin, J.-X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Malek, T. R. & Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153–165 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    PubMed  CAS  Google Scholar 

  6. Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Taniguchi, T. The IL-2/IL-2 receptor system: A current overview. Cell 73, 5–8 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. Arkin, M. R. et al. Binding of small molecules to an adaptive protein–protein interface. Proc. Natl Acad. Sci. USA 100, 1603–1608 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Rickert, M., Wang, X., Boulanger, M. J., Goriatcheva, N. & Garcia, K. C. The structure of interleukin-2 complexed with its alpha receptor. Science 308, 1477–1480 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Yu, A., Zhu, L., Altman, N. H. & Malek, T. R. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30, 204–217 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Brusko, T. M., Putnam, A. L. & Bluestone, J. A. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol. Rev. 223, 371–390 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Immunity 17, 167–178 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. London, N. R. et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci. Transl. Med. 2, 23ra19 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ferrara, J. L. M. Cytokine dysregulation as a mechanism of graft versus host disease. Curr. Opin. Immunology 5, 794–799 (1993).

    Article  CAS  Google Scholar 

  16. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 370, 786–786 (2014).

    CAS  Google Scholar 

  17. Yu, A. et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms support the use of low-dose IL-2 therapy in Type-1 diabetes. Diabetes 64, 2172–2183 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Article  CAS  Google Scholar 

  21. Hartemann, A. et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 1, 295–305 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Matsuoka, K.-I. et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci. Transl. Med. 5, 179ra43 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Arenas-Ramirez, N., Woytschak, J. & Boyman, O. Interleukin-2: biology, design and application. Trends Immunol. 36, 763–777 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Long, S. A. et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61, 2340–2348 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody–cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Arenas-Ramirez, N. et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl. Med. 8, 367ra166 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Yang, J. C. et al. The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. A phase I study and a randomized prospective study comparing IL-2 alone versus IL-2 combined with PEG-IL-2. Cancer 76, 687–694 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. Wu, K. et al. Short-term intratracheal use of PEG-modified IL-2 and glucocorticoid persistently alleviates asthma in a mouse model. Sci. Rep. 6, 31562 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jafari, R., Zolbanin, N. M., Rafatpanah, H., Majidi, J. & Kazemi, T. Fc-fusion proteins in therapy: an updated view. Curr. Med. Chem. 24, 1228–1237 (2017).

    Article  PubMed  CAS  Google Scholar 

  32. Finkelman, F. D. et al. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J. Immunol. 151, 1235–1244 (1993).

    PubMed  CAS  Google Scholar 

  33. Spangler, J. B. et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42, 815–825 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Putnam, A. L. et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58, 652–662 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Grinberg-Bleyer, Y. et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J. Exp. Med. 207, 1871–1878 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hannon, M. et al. Infusion of clinical-grade enriched regulatory T cells delays experimental xenogeneic graft-versus-host disease. Transfusion 54, 353–363 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Jamieson, A. M. et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17, 19–29 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Dokun, A. O. et al. Specific and nonspecific NK cell activation during virus infection. Nat. Immunol. 2, 951–956 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. Krieg, C., Letourneau, S., Pantaleo, G. & Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl Acad. Sci. USA 107, 11906–11911 (2010).

    Article  PubMed  Google Scholar 

  42. Létourneau, S. et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc. Natl Acad. Sci. USA 107, 2171–2176 (2010).

    Article  PubMed  Google Scholar 

  43. Webster, K. E. et al. In vivo expansion of T reg cells with IL-2–mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 206, 751–760 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lee, S.-Y. et al. Interleukin-2/anti-interleukin-2 monoclonal antibody immune complex suppresses collagen-induced arthritis in mice by fortifying interleukin-2/STAT5 signalling pathways. Immunology 137, 305–316 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liu, R. et al. Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur. J. Immunol. 40, 1577–1589 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    Article  PubMed  CAS  Google Scholar 

  47. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wang, X., Rickert, M. & Garcia, K. C. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310, 1159–1163 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pfizer for funding this study and participating in experiments and discussion, and the entire laboratory of J.A.B. and members of the laboratory of K.C.G. for support. In particular, we thank F. Van Gool and M. DuPage from the Bluestone laboratory for insightful discussions, D. Samuel from CTI-Pfizer for antibodies and protein preparation and UCSF Flow Core for its excellent technical assistance. We would also like to thank all of the healthy donors involved in this study.

Author information

Authors and Affiliations

Authors

Contributions

E.T., J.A.B., N.K.C. and I.J.R. designed the study; E.T., P.H.B., S.L.S., L.K.E., D.T.L. and C.R.H. performed experiments in vitro and in vivo with antibodies; M.P. performed experiments with MCMV; K.M.J. performed crystal structure analysis of F5111; L.L.L., K.C.G. and A.C. provided conceptual advice; E.T., J.A.B., N.K.C. and I.J.R. wrote the manuscript.

Corresponding author

Correspondence to Jeffrey A. Bluestone.

Ethics declarations

Competing interests

CTI-Pfizer funded this study. E.T., P.H.B., L.K.E., N.K.C., J.A.B. and I.J.R. are co-inventors on a patent application filed by CTI-Pfizer and UCSF incorporating discoveries described in the manuscript.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trotta, E., Bessette, P.H., Silveria, S.L. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 24, 1005–1014 (2018). https://doi.org/10.1038/s41591-018-0070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0070-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research