Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke


Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: LFO activity during a skilled forelimb reaching task in healthy rats.
Fig. 2: Stroke diminished LFO activity in M1.
Fig. 3: Restoration of LFOs in the perilesional motor cortex tracked motor recovery.
Fig. 4: Movement-related LFOs in the sensorimotor cortex of a human stroke patient relative to non-stroke subjects.
Fig. 5: LFO activity increased with DCS in acute (anesthetized) recording sessions.
Fig. 6: Task-dependent DCS improved motor function post-stroke.


  1. 1.

    Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron 68, 387–400 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Hall, T. M., de Carvalho, F. & Jackson, A. A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation. Neuron 83, 1185–1199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W. & Donoghue, J. P. Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J. Neurophysiol. 105, 1603–1619 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stefanics, G. et al. Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J. Neurosci. 30, 13578–13585 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Mollazadeh, M. et al. Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements. J. Neurosci. 31, 15531–15543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Mollazadeh, M. et al. Coherency between spike and LFP activity in M1 during hand movements. in 2009 4th International IEEE/EMBS Conference on Neural Engineering, 506–509 (IEEE, 2009).

  8. 8.

    Ganguly, K. et al. Cortical representation of ipsilateral arm movements in monkey and man. J. Neurosci. 29, 12948–12956 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Rickert, J. et al. Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J. Neurosci. 25, 8815–8824 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G. & Gaál, G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol. 79, 159–173 (1998).

    CAS  PubMed  Google Scholar 

  11. 11.

    O’Leary, J. G. & Hatsopoulos, N. G. Early visuomotor representations revealed from evoked local field potentials in motor and premotor cortical areas. J. Neurophysiol. 96, 1492–1506 (2006).

    PubMed  Google Scholar 

  12. 12.

    Sasaki, K., Gemba, H. & Hashimoto, S. Premovement slow cortical potentials on self-paced hand movements and thalamocortical and corticocortical responses in the monkey. Exp. Neurol. 72, 41–50 (1981).

    CAS  PubMed  Google Scholar 

  13. 13.

    Hashimoto, S., Gemba, H. & Sasaki, K. Analysis of slow cortical potentials preceding self-paced hand movements in the monkey. Exp. Neurol. 65, 218–229 (1979).

    CAS  PubMed  Google Scholar 

  14. 14.

    Hall, T. M., Nazarpour, K. & Jackson, A. Real-time estimation and biofeedback of single-neuron firing rates using local field potentials. Nat. Commun. 5, 5462 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E. & Slutzky, M. W. Local field potentials allow accurate decoding of muscle activity. J. Neurophysiol. 108, 18–24 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Krasoulis, A., Hall, T. M., Vijayakumar, S., Jackson, A. & Nazarpour, K. Generalizability of EMG decoding using local field potentials. in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 1630–1633 (IEEE, 2014).

  17. 17.

    Ramanathan, D., Conner, J. M. & Tuszynski, M. H. A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proc. Natl Acad. Sci. USA 103, 11370–11375 (2006).

    CAS  PubMed  Google Scholar 

  18. 18.

    Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794 (1996).

    CAS  PubMed  Google Scholar 

  19. 19.

    Lim, D. H., LeDue, J. M., Mohajerani, M. H. & Murphy, T. H. Optogenetic mapping after stroke reveals network-wide scaling of functional connections and heterogeneous recovery of the peri-infarct. J. Neurosci. 34, 16455–16466 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Brown, C. E., Wong, C. & Murphy, T. H. Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic. Stroke 39, 1286–1291 (2008).

    PubMed  Google Scholar 

  21. 21.

    Rockstroh, B. Slow Cortical Potentials and Behaviour (Urban & Schwarzenberg, Munich, 1989).

  22. 22.

    Birbaumer, N., Elbert, T., Canavan, A. G. & Rockstroh, B. Slow potentials of the cerebral cortex and behavior. Physiol. Rev. 70, 1–41 (1990).

    CAS  PubMed  Google Scholar 

  23. 23.

    Preparatory States and Processes (Psychology Press, Hillsdale, NJ, USA, 1984).

  24. 24.

    Honda, M. et al. Movement-related cortical potentials and regional cerebral blood flow change in patients with stroke after motor recovery. J. Neurol. Sci. 146, 117–126 (1997).

    CAS  PubMed  Google Scholar 

  25. 25.

    Kitamura, J., Shibasaki, H. & Takeuchi, T. Cortical potentials preceding voluntary elbow movement in recovered hemiparesis. Electroencephalogr. Clin. Neurophysiol. 98, 149–156 (1996).

    CAS  PubMed  Google Scholar 

  26. 26.

    Yilmaz, O., Birbaumer, N. & Ramos-Murguialday, A. Movement related slow cortical potentials in severely paralyzed chronic stroke patients. Front. Hum. Neurosci. 8, 1033 (2015).

  27. 27.

    Yilmaz, O., Cho, W., Braun, C., Birbaumer, N. & Ramos-Murguialday, A. Movement related cortical potentials in severe chronic stroke. in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2216–2219 (IEEE, 2013).

  28. 28.

    Allman, C. et al. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci. Transl Med. 8, 330re1 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Elsner, B., Kugler, J., Pohl, M. & Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst. Rev. 3, CD009645 (2016).

  30. 30.

    Levy, R. M. et al. Epidural electrical stimulation for stroke rehabilitation results of the prospective, multicenter, randomized, single-blinded Everest trial. Neurorehabil. Neural Repair 30, 107–119 (2016).

    PubMed  Google Scholar 

  31. 31.

    Nitsche, M. A. & Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901 (2001).

    CAS  PubMed  Google Scholar 

  32. 32.

    Fritsch, B. et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Guggenmos, D. J. et al. Restoration of function after brain damage using a neural prosthesis. Proc. Natl Acad. Sci. USA 110, 21177–21182 (2013).

    CAS  PubMed  Google Scholar 

  34. 34.

    Reato, D., Rahman, A., Bikson, M. & Parra, L. C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 30, 15067–15079 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ali, M. M., Sellers, K. K. & Fröhlich, F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J. Neurosci. 33, 11262–11275 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Rosin, B. et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011).

    CAS  PubMed  Google Scholar 

  37. 37.

    Berényi, A., Belluscio, M., Mao, D. & Buzsáki, G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337, 735–737 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Whishaw, I. Q. & Pellis, S. M. The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behav. Brain Res. 41, 49–59 (1990).

    CAS  PubMed  Google Scholar 

  39. 39.

    Wong, C. C., Ramanathan, D. S., Gulati, T., Won, S. J. & Ganguly, K. An automated behavioral box to assess forelimb function in rats. J. Neurosci. Methods 246, 30–37 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kargo, W. J. & Nitz, D. A. Improvements in the signal-to-noise ratio of motor cortex cells distinguish early versus late phases of motor skill learning. J. Neurosci. 24, 5560–5569 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ramanathan, D. S., Gulati, T. & Ganguly, K. Sleep-dependent reactivation of ensembles in motor cortex promotes skill consolidation. PLoS Biol. 13, e1002263 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Flint, R. D., Wright, Z. A., Scheid, M. R. & Slutzky, M. W. Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J. Neural Eng. 10, 056005 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Flint, R. D., Scheid, M. R., Wright, Z. A., Solla, S. A. & Slutzky, M. W. Long-term stability of motor cortical activity: implications for brain machine interfaces and optimal feedback control. J. Neurosci. 36, 3623–3632 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Godlove, J., Gulati, T., Dichter, B., Chang, E. & Ganguly, K. Muscle synergies after stroke are correlated with perilesional high gamma. Ann. Clin. Transl Neurol. 3, 956–961 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Gharbawie, O. A., Gonzalez, C. L. R., Williams, P. T., Kleim, J. A. & Whishaw, I. Q. Middle cerebral artery (MCA) stroke produces dysfunction in adjacent motor cortex as detected by intracortical microstimulation in rats. Neuroscience 130, 601–610 (2005).

    CAS  PubMed  Google Scholar 

  46. 46.

    Carmichael, S. T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRX 2, 396–409 (2005).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Nishibe, M., Edward, T. R., Urban, I., Barbay, S. & Nudo, R. J. Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil. Neural Repair 29, 472–482 (2015).

    PubMed  Google Scholar 

  48. 48.

    Gulati, T. et al. Robust neuroprosthetic control from the stroke perilesional cortex. J. Neurosci. 35, 8653–8661 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Chang, E. F. Towards large-scale, human-based, mesoscopic neurotechnologies. Neuron 86, 68–78 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bikson, M. et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J. Physiol. 557, 175–190 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Gulati, T., Ramanathan, D. S., Wong, C. C. & Ganguly, K. Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning. Nat. Neurosci. 17, 1107–1113 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    PubMed  Google Scholar 

  53. 53.

    Makeig, S. et al. Dynamic brain sources of visual evoked responses. Science 295, 690–694 (2002).

    CAS  PubMed  Google Scholar 

  54. 54.

    Corbetta, M. et al. Common behavioral clusters and subcortical anatomy in stroke. Neuron 85, 927–941 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    DeCoteau, W. E. et al. Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviors. J. Neurophysiol. 97, 3800–3805 (2007).

    PubMed  Google Scholar 

  56. 56.

    Dossi, R. C., Nuñez, A. & Steriade, M. Electrophysiology of a slow (0.5–4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J. Physiol. 447, 215–234 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Plautz, E. J. et al. Effects of subdural monopolar cortical stimulation paired with rehabilitative training on behavioral and neurophysiological recovery after cortical ischemic stroke in adult squirrel monkeys. Neurorehabil. Neural Repair 30, 159–172 (2016).

    PubMed  Google Scholar 

  58. 58.

    Lafon, B. et al. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat. Commun. 8, 1199 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Dimyan, M. A. & Cohen, L. G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7, 76–85 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Longa, E. Z., Weinstein, P. R., Carlson, S. & Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91 (1989).

    CAS  PubMed  Google Scholar 

  61. 61.

    Rogers, D. C., Campbell, C. A., Stretton, J. L. & Mackay, K. B. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 28, 2060–2066 (1997).

    CAS  PubMed  Google Scholar 

  62. 62.

    Friedberg, M. H., Lee, S. M. & Ebner, F. F. Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J. Neurophysiol. 81, 2243–2252 (1999).

    CAS  PubMed  Google Scholar 

  63. 63.

    Taplin, A. M. et al. Intraoperative mapping of expressive language cortex using passive real-time electrocorticography. Epilepsy Behav. Case Rep. 5, 46–51 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Plautz, E. J. et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol. Res. 25, 801–810 (2003).

    PubMed  Google Scholar 

  65. 65.

    Levy, R. et al. Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J. Neurosurg. 108, 707–714 (2008).

    PubMed  Google Scholar 

  66. 66.

    Gulati, T., Guo, L., Ramanathan, D. S., Bodepudi, A. & Ganguly, K. Neural reactivations during sleep determine network credit assignment. Nat. Neurosci. 20, 1277–1284 (2017).

  67. 67.

    Wallstrom, G., Liebner, J. & Kass, R. E. An implementation of Bayesian adaptive regression splines (BARS) in C with S and R wrappers. J. Stat. Softw. 26, 1–21 (2008).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Yu, B. M. et al. in Advances in Neural Information Processing Systems 21 (eds. Koller, D. et al.) 1881–1888 (Curran Associates, Inc., Red Hook, NY, USA, 2009).

  69. 69.

    Cowley, B. R. et al. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity. J. Neural Eng. 10, 066012 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by awards from the National Institute of Neurological Disorders and Stroke, NIH (Pathway to Independence Award to T.G., 1K99NS097620), A*STAR (fellowship to L.G.), Department of Veterans Affairs, Veterans Health Administration (VA Merit: 1I01RX001640 to K.G., Career Development Award: 7IK2BX003308 to D.S.R.) and National Institute of Mental Health, NIH (5R01MH111871 to K.G.); and start-up funds from the UCSF Department of Neurology to K.G.; and a Career Award for Medical Scientists from the Burroughs Wellcome Fund to D.S.R. (1015644). K.G. also holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund (1009855) and an Independent Scientist Award (1K02NS093014) from the National Institute of Neurological Disorders and Stroke, NIH. This human work was also supported by a grant from the NIH (R37NS21135 to R.T.K.).

Author information




For the rodent experiments, D.S.R., L.G., T.G., S.-J.W. and K.G. conceived and designed the experiments. R.A.S. provided input on the design of the stroke models. D.S.R., L.G., T.G., G.D., A.K.H. and S.-J.W. performed the experiments. D.S.R., L.G., G.D. and T.G. analyzed the data. For the human experiments, T.G., K.G., E.F.C. and R.T.K. were involved in data collection. D.S.R. analyzed the data. D.S.R., L.G., T.G. and K.G. wrote the manuscript. All authors contributed to editing and revising the manuscript.

Corresponding author

Correspondence to Karunesh Ganguly.

Ethics declarations

Competing interests

D.S.R., T.G. and K.G. filed a PCT Patent Application for Systems Methods and Devices for Closed Loop Methods To Enhance Motor Recovery After Stroke.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, D.S., Guo, L., Gulati, T. et al. Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke. Nat Med 24, 1257–1267 (2018). https://doi.org/10.1038/s41591-018-0058-y

Download citation

Further reading