Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron 68, 387–400 (2010).

  2. 2.

    Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

  3. 3.

    Hall, T. M., de Carvalho, F. & Jackson, A. A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation. Neuron 83, 1185–1199 (2014).

  4. 4.

    Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W. & Donoghue, J. P. Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J. Neurophysiol. 105, 1603–1619 (2011).

  5. 5.

    Stefanics, G. et al. Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J. Neurosci. 30, 13578–13585 (2010).

  6. 6.

    Mollazadeh, M. et al. Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements. J. Neurosci. 31, 15531–15543 (2011).

  7. 7.

    Mollazadeh, M. et al. Coherency between spike and LFP activity in M1 during hand movements. in 2009 4th International IEEE/EMBS Conference on Neural Engineering, 506–509 (IEEE, 2009).

  8. 8.

    Ganguly, K. et al. Cortical representation of ipsilateral arm movements in monkey and man. J. Neurosci. 29, 12948–12956 (2009).

  9. 9.

    Rickert, J. et al. Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J. Neurosci. 25, 8815–8824 (2005).

  10. 10.

    Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G. & Gaál, G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol. 79, 159–173 (1998).

  11. 11.

    O’Leary, J. G. & Hatsopoulos, N. G. Early visuomotor representations revealed from evoked local field potentials in motor and premotor cortical areas. J. Neurophysiol. 96, 1492–1506 (2006).

  12. 12.

    Sasaki, K., Gemba, H. & Hashimoto, S. Premovement slow cortical potentials on self-paced hand movements and thalamocortical and corticocortical responses in the monkey. Exp. Neurol. 72, 41–50 (1981).

  13. 13.

    Hashimoto, S., Gemba, H. & Sasaki, K. Analysis of slow cortical potentials preceding self-paced hand movements in the monkey. Exp. Neurol. 65, 218–229 (1979).

  14. 14.

    Hall, T. M., Nazarpour, K. & Jackson, A. Real-time estimation and biofeedback of single-neuron firing rates using local field potentials. Nat. Commun. 5, 5462 (2014).

  15. 15.

    Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E. & Slutzky, M. W. Local field potentials allow accurate decoding of muscle activity. J. Neurophysiol. 108, 18–24 (2012).

  16. 16.

    Krasoulis, A., Hall, T. M., Vijayakumar, S., Jackson, A. & Nazarpour, K. Generalizability of EMG decoding using local field potentials. in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 1630–1633 (IEEE, 2014).

  17. 17.

    Ramanathan, D., Conner, J. M. & Tuszynski, M. H. A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proc. Natl Acad. Sci. USA 103, 11370–11375 (2006).

  18. 18.

    Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794 (1996).

  19. 19.

    Lim, D. H., LeDue, J. M., Mohajerani, M. H. & Murphy, T. H. Optogenetic mapping after stroke reveals network-wide scaling of functional connections and heterogeneous recovery of the peri-infarct. J. Neurosci. 34, 16455–16466 (2014).

  20. 20.

    Brown, C. E., Wong, C. & Murphy, T. H. Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic. Stroke 39, 1286–1291 (2008).

  21. 21.

    Rockstroh, B. Slow Cortical Potentials and Behaviour (Urban & Schwarzenberg, Munich, 1989).

  22. 22.

    Birbaumer, N., Elbert, T., Canavan, A. G. & Rockstroh, B. Slow potentials of the cerebral cortex and behavior. Physiol. Rev. 70, 1–41 (1990).

  23. 23.

    Preparatory States and Processes (Psychology Press, Hillsdale, NJ, USA, 1984).

  24. 24.

    Honda, M. et al. Movement-related cortical potentials and regional cerebral blood flow change in patients with stroke after motor recovery. J. Neurol. Sci. 146, 117–126 (1997).

  25. 25.

    Kitamura, J., Shibasaki, H. & Takeuchi, T. Cortical potentials preceding voluntary elbow movement in recovered hemiparesis. Electroencephalogr. Clin. Neurophysiol. 98, 149–156 (1996).

  26. 26.

    Yilmaz, O., Birbaumer, N. & Ramos-Murguialday, A. Movement related slow cortical potentials in severely paralyzed chronic stroke patients. Front. Hum. Neurosci. 8, 1033 (2015).

  27. 27.

    Yilmaz, O., Cho, W., Braun, C., Birbaumer, N. & Ramos-Murguialday, A. Movement related cortical potentials in severe chronic stroke. in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2216–2219 (IEEE, 2013).

  28. 28.

    Allman, C. et al. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci. Transl Med. 8, 330re1 (2016).

  29. 29.

    Elsner, B., Kugler, J., Pohl, M. & Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst. Rev. 3, CD009645 (2016).

  30. 30.

    Levy, R. M. et al. Epidural electrical stimulation for stroke rehabilitation results of the prospective, multicenter, randomized, single-blinded Everest trial. Neurorehabil. Neural Repair 30, 107–119 (2016).

  31. 31.

    Nitsche, M. A. & Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901 (2001).

  32. 32.

    Fritsch, B. et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204 (2010).

  33. 33.

    Guggenmos, D. J. et al. Restoration of function after brain damage using a neural prosthesis. Proc. Natl Acad. Sci. USA 110, 21177–21182 (2013).

  34. 34.

    Reato, D., Rahman, A., Bikson, M. & Parra, L. C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 30, 15067–15079 (2010).

  35. 35.

    Ali, M. M., Sellers, K. K. & Fröhlich, F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J. Neurosci. 33, 11262–11275 (2013).

  36. 36.

    Rosin, B. et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011).

  37. 37.

    Berényi, A., Belluscio, M., Mao, D. & Buzsáki, G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337, 735–737 (2012).

  38. 38.

    Whishaw, I. Q. & Pellis, S. M. The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behav. Brain Res. 41, 49–59 (1990).

  39. 39.

    Wong, C. C., Ramanathan, D. S., Gulati, T., Won, S. J. & Ganguly, K. An automated behavioral box to assess forelimb function in rats. J. Neurosci. Methods 246, 30–37 (2015).

  40. 40.

    Kargo, W. J. & Nitz, D. A. Improvements in the signal-to-noise ratio of motor cortex cells distinguish early versus late phases of motor skill learning. J. Neurosci. 24, 5560–5569 (2004).

  41. 41.

    Ramanathan, D. S., Gulati, T. & Ganguly, K. Sleep-dependent reactivation of ensembles in motor cortex promotes skill consolidation. PLoS Biol. 13, e1002263 (2015).

  42. 42.

    Flint, R. D., Wright, Z. A., Scheid, M. R. & Slutzky, M. W. Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J. Neural Eng. 10, 056005 (2013).

  43. 43.

    Flint, R. D., Scheid, M. R., Wright, Z. A., Solla, S. A. & Slutzky, M. W. Long-term stability of motor cortical activity: implications for brain machine interfaces and optimal feedback control. J. Neurosci. 36, 3623–3632 (2016).

  44. 44.

    Godlove, J., Gulati, T., Dichter, B., Chang, E. & Ganguly, K. Muscle synergies after stroke are correlated with perilesional high gamma. Ann. Clin. Transl Neurol. 3, 956–961 (2016).

  45. 45.

    Gharbawie, O. A., Gonzalez, C. L. R., Williams, P. T., Kleim, J. A. & Whishaw, I. Q. Middle cerebral artery (MCA) stroke produces dysfunction in adjacent motor cortex as detected by intracortical microstimulation in rats. Neuroscience 130, 601–610 (2005).

  46. 46.

    Carmichael, S. T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRX 2, 396–409 (2005).

  47. 47.

    Nishibe, M., Edward, T. R., Urban, I., Barbay, S. & Nudo, R. J. Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil. Neural Repair 29, 472–482 (2015).

  48. 48.

    Gulati, T. et al. Robust neuroprosthetic control from the stroke perilesional cortex. J. Neurosci. 35, 8653–8661 (2015).

  49. 49.

    Chang, E. F. Towards large-scale, human-based, mesoscopic neurotechnologies. Neuron 86, 68–78 (2015).

  50. 50.

    Bikson, M. et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J. Physiol. 557, 175–190 (2004).

  51. 51.

    Gulati, T., Ramanathan, D. S., Wong, C. C. & Ganguly, K. Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning. Nat. Neurosci. 17, 1107–1113 (2014).

  52. 52.

    Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

  53. 53.

    Makeig, S. et al. Dynamic brain sources of visual evoked responses. Science 295, 690–694 (2002).

  54. 54.

    Corbetta, M. et al. Common behavioral clusters and subcortical anatomy in stroke. Neuron 85, 927–941 (2015).

  55. 55.

    DeCoteau, W. E. et al. Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviors. J. Neurophysiol. 97, 3800–3805 (2007).

  56. 56.

    Dossi, R. C., Nuñez, A. & Steriade, M. Electrophysiology of a slow (0.5–4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J. Physiol. 447, 215–234 (1992).

  57. 57.

    Plautz, E. J. et al. Effects of subdural monopolar cortical stimulation paired with rehabilitative training on behavioral and neurophysiological recovery after cortical ischemic stroke in adult squirrel monkeys. Neurorehabil. Neural Repair 30, 159–172 (2016).

  58. 58.

    Lafon, B. et al. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat. Commun. 8, 1199 (2017).

  59. 59.

    Dimyan, M. A. & Cohen, L. G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7, 76–85 (2011).

  60. 60.

    Longa, E. Z., Weinstein, P. R., Carlson, S. & Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91 (1989).

  61. 61.

    Rogers, D. C., Campbell, C. A., Stretton, J. L. & Mackay, K. B. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 28, 2060–2066 (1997).

  62. 62.

    Friedberg, M. H., Lee, S. M. & Ebner, F. F. Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J. Neurophysiol. 81, 2243–2252 (1999).

  63. 63.

    Taplin, A. M. et al. Intraoperative mapping of expressive language cortex using passive real-time electrocorticography. Epilepsy Behav. Case Rep. 5, 46–51 (2016).

  64. 64.

    Plautz, E. J. et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol. Res. 25, 801–810 (2003).

  65. 65.

    Levy, R. et al. Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J. Neurosurg. 108, 707–714 (2008).

  66. 66.

    Gulati, T., Guo, L., Ramanathan, D. S., Bodepudi, A. & Ganguly, K. Neural reactivations during sleep determine network credit assignment. Nat. Neurosci. 20, 1277–1284 (2017).

  67. 67.

    Wallstrom, G., Liebner, J. & Kass, R. E. An implementation of Bayesian adaptive regression splines (BARS) in C with S and R wrappers. J. Stat. Softw. 26, 1–21 (2008).

  68. 68.

    Yu, B. M. et al. in Advances in Neural Information Processing Systems 21 (eds. Koller, D. et al.) 1881–1888 (Curran Associates, Inc., Red Hook, NY, USA, 2009).

  69. 69.

    Cowley, B. R. et al. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity. J. Neural Eng. 10, 066012 (2013).

  70. 70.

    Aarts, E., Verhage, M., Veenvliet, J. V., Dolan, C. V. & van der Sluis, S. A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014).

Download references


This work was supported by awards from the National Institute of Neurological Disorders and Stroke, NIH (Pathway to Independence Award to T.G., 1K99NS097620), A*STAR (fellowship to L.G.), Department of Veterans Affairs, Veterans Health Administration (VA Merit: 1I01RX001640 to K.G., Career Development Award: 7IK2BX003308 to D.S.R.) and National Institute of Mental Health, NIH (5R01MH111871 to K.G.); and start-up funds from the UCSF Department of Neurology to K.G.; and a Career Award for Medical Scientists from the Burroughs Wellcome Fund to D.S.R. (1015644). K.G. also holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund (1009855) and an Independent Scientist Award (1K02NS093014) from the National Institute of Neurological Disorders and Stroke, NIH. This human work was also supported by a grant from the NIH (R37NS21135 to R.T.K.).

Author information

Author notes

  1. These authors contributed equally: Dhakshin S. Ramanathan, Ling Guo, Tanuj Gulati.


  1. Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA

    • Dhakshin S. Ramanathan
    • , Ling Guo
    • , Tanuj Gulati
    • , Gray Davidson
    • , April K. Hishinuma
    • , Seok-Joon Won
    • , Raymond A. Swanson
    •  & Karunesh Ganguly
  2. Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA

    • Dhakshin S. Ramanathan
    •  & Gray Davidson
  3. Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA

    • Dhakshin S. Ramanathan
    •  & Gray Davidson
  4. Mental Health Service, VA San Diego Health System, San Diego, San Diego, CA, USA

    • Dhakshin S. Ramanathan
  5. Department of Psychiatry, University of California, San Diego, San Diego, CA, USA

    • Dhakshin S. Ramanathan
  6. Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA

    • Ling Guo
  7. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA

    • Tanuj Gulati
    • , April K. Hishinuma
    • , Seok-Joon Won
    • , Raymond A. Swanson
    •  & Karunesh Ganguly
  8. Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA

    • Robert T. Knight
  9. Department of Psychology, University of California, Berkeley, Berkeley, CA, USA

    • Robert T. Knight
  10. Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA

    • Edward F. Chang


  1. Search for Dhakshin S. Ramanathan in:

  2. Search for Ling Guo in:

  3. Search for Tanuj Gulati in:

  4. Search for Gray Davidson in:

  5. Search for April K. Hishinuma in:

  6. Search for Seok-Joon Won in:

  7. Search for Robert T. Knight in:

  8. Search for Edward F. Chang in:

  9. Search for Raymond A. Swanson in:

  10. Search for Karunesh Ganguly in:


For the rodent experiments, D.S.R., L.G., T.G., S.-J.W. and K.G. conceived and designed the experiments. R.A.S. provided input on the design of the stroke models. D.S.R., L.G., T.G., G.D., A.K.H. and S.-J.W. performed the experiments. D.S.R., L.G., G.D. and T.G. analyzed the data. For the human experiments, T.G., K.G., E.F.C. and R.T.K. were involved in data collection. D.S.R. analyzed the data. D.S.R., L.G., T.G. and K.G. wrote the manuscript. All authors contributed to editing and revising the manuscript.

Competing interests

D.S.R., T.G. and K.G. filed a PCT Patent Application for Systems Methods and Devices for Closed Loop Methods To Enhance Motor Recovery After Stroke.

Corresponding author

Correspondence to Karunesh Ganguly.

Supplementary information

About this article

Publication history