Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade

Abstract

Evidence from mouse chronic viral infection models suggests that CD8+ T cell subsets characterized by distinct expression levels of the receptor PD-1 diverge in their state of exhaustion and potential for reinvigoration by PD-1 blockade. However, it remains unknown whether T cells in human cancer adopt a similar spectrum of exhausted states based on PD-1 expression levels. We compared transcriptional, metabolic and functional signatures of intratumoral CD8+ T lymphocyte populations with high (PD-1T), intermediate (PD-1N) and no PD-1 expression (PD-1) from non-small-cell lung cancer patients. PD-1T T cells showed a markedly different transcriptional and metabolic profile from PD-1N and PD-1 lymphocytes, as well as an intrinsically high capacity for tumor recognition. Furthermore, while PD-1T lymphocytes were impaired in classical effector cytokine production, they produced CXCL13, which mediates immune cell recruitment to tertiary lymphoid structures. Strikingly, the presence of PD-1T cells was strongly predictive for both response and survival in a small cohort of non-small-cell lung cancer patients treated with PD-1 blockade. The characterization of a distinct state of tumor-reactive, PD-1-bright lymphocytes in human cancer, which only partially resembles that seen in chronic infection, provides potential avenues for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-receptor expression, functionality and tumor reactivity of CD8+ PD-1+ TIL populations in NSCLC.
Fig. 2: Gene expression profile of sorted PD-1T, PD-1N and PD-1 TILs from NSCLC specimens.
Fig. 3: PD-1T TILs show overexpression of inhibitory receptors, but display a key gene signature distinct from exhausted T cells in murine chronic infection and cancer.
Fig. 4: Alterations in glucose, lipid and mitochondrial metabolism in PD-1T TILs.
Fig. 5: PD-1T TILs display a fixed state of dysfunction.
Fig. 6: CXCL13 expression of PD-1T TILs and predictive potential for response to PD-1 blockade.

Similar content being viewed by others

References

  1. Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. Heemskerk, B., Kvistborg, P. & Schumacher, T. N. The cancer antigenome. EMBO J. 32, 194–203 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  PubMed  CAS  Google Scholar 

  5. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  PubMed  CAS  Google Scholar 

  9. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12, 1198–1202 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Golden-Mason, L. et al. Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J. Virol. 81, 9249–9258 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Thommen, D. S. et al. Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. CancerImmunol. Res. 3, 1344–1355 (2015).

    CAS  Google Scholar 

  15. Schreiner, J. et al. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor. Oncoimmunology 5, e1062969 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zippelius, A. et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 64, 2865–2873 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    Article  PubMed  Google Scholar 

  18. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Grosso, J. F. et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J. Immunol. 182, 6659–6669 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kansy, B. A. et al. PD-1 status in CD8+ T cells associates with survival and anti-PD-1 therapeutic outcomes in head and neck cancer. Cancer Res. 77, 6353–6364 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. Wolfl, M. et al. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110, 201–210 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Inozume, T. et al. Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells. J. Immunother. 33, 956–964 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e1316 (2017).

    Article  PubMed  CAS  Google Scholar 

  28. Henson, S. M. et al. KLRG1 signaling induces defective Akt (Ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113, 6619–6628 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. Crawford, A. et al. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40, 289–302 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511.e1509 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gupta, P. K. et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog. 11, e1005177 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med. 16, 1147–1151 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  PubMed  Google Scholar 

  42. Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang, Y. et al. Autocrine complement inhibits IL10-dependent T-cell-mediated antitumor immunity to promote tumor progression. Cancer Discov. 6, 1022–1035 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. He, R. et al. Follicular CXCR5- expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–428 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gu-Trantien, C. et al. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2, 91487 (2017).

    Article  PubMed  Google Scholar 

  50. Gunnlaugsdottir, B., Maggadottir, S. M. & Ludviksson, B. R. Anti-CD28-induced co-stimulation and TCR avidity regulates the differential effect of TGF-beta1 on CD4+ and CD8+ naïve human T-cells. Int. Immunol. 17, 35–44 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5, 943–952 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Wu, T. D., Reeder, J., Lawrence, M., Becker, G. & Brauer, M. J. GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Methods Mol. Biol. 1418, 283–334 (2016).

  53. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. Becker, R. A., Chambers, J. M. & Wilks, A. R. The New S Language (Wadsworth & Brooks/Cole, Monterey, CA, USA, 1988).

    Google Scholar 

  55. Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).

  56. Nazarov, V. I. et al. tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics 16, 175 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Labes and E. Traunecker for exemplary technical assistance with cell sorting, F. Franco and T. Chao for performing electron microscopy analysis, L. Tietze (Ortenau Klinikum, Germany) for contribution of tumor samples, B. Dolder-Schlienger for technical assistance, and F. Uhlenbrock and D. Pinschewer for discussions and critical reading of the manuscript. This work was supported by grants from the Swiss National Science Foundation (P300PB_164755 to D.S.T., 320030_162575 to A.Z. and 31003A_163204 to P.C.H.), the Research Funds University of Basel (D.S.T.), the Lichtenstein-Stiftung (D.S.T.), the FAG-Basel (D.S.T.), the Dutch Cancer Society Queen Wilhelmina Award NKI 2013-6122 (T.N.S.) and ERC grant SENSIT (T.N.S.).

Author information

Authors and Affiliations

Authors

Contributions

D.S.T.: study design and supervision, design and execution of the experiments; data acquisition, analysis and interpretation; writing and revision of the manuscript; V.H.K.: execution of immunohistochemistry stainings, digital image analysis; contribution to manuscript drafting and revision; P.H.: execution of experiments; contribution to manuscript drafting and revision; A.R.: statistical analysis and interpretation, contribution to manuscript drafting; M.T.: execution of experiments; A.K.: RNA-seq analysis; S.D.: design and technical support with metabolism analysis; J.H.: execution of immunohistochemistry and digital image analysis; C.S.: collection and analysis of clinical data; C.H.: design of metabolism experiments, contribution to manuscript drafting; S.S.P.: collection and pathological characterization of patient samples; M.W. and D.L.: recruitment and characterization of patients; P.C.H.: execution of experiments, contribution to manuscript drafting; C.K. and V.K.: contribution to manuscript drafting; K.D.M.: execution of immunohistochemistry analysis; contribution to manuscript drafting; T.N.S.: study design and supervision; writing and revision of the manuscript; A.Z.: study design and supervision, writing and revision of the manuscript.

Corresponding authors

Correspondence to Daniela S. Thommen or Alfred Zippelius.

Ethics declarations

Competing interests

A.R., A.K., C.K., V.K. are employed by Roche. A.Z. received research funding from Roche. Part of the work described in this manuscript is the subject of a patent application co-owned by NKI-AVL and the University of Basel. Based on NKI-AVL and the University of Basel policy on management of intellectual property, D.S.T., V.H.K., K.D.M., A.Z. and T.N.S. would be entitled to a portion of the royalty income received.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Supplementary Figures 1–6

Reporting Summary

Supplementary Table 1

TCR analysis data

Supplementary Table 2

Gene expression data

Supplementary Table 3

Tumor sample overview

Supplementary Table 4

Patient characteristics for predictive analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thommen, D.S., Koelzer, V.H., Herzig, P. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 24, 994–1004 (2018). https://doi.org/10.1038/s41591-018-0057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0057-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer