Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Therapeutic and protective efficacy of a dengue antibody against Zika infection in rhesus monkeys

Abstract

Strategies to treat Zika virus (ZIKV) infection in dengue virus (DENV)-endemic areas are urgently needed. Here we show that a DENV-specific antibody against the E-dimer epitope (EDE) potently cross-neutralizes ZIKV and provides robust therapeutic efficacy as well as prophylactic efficacy against ZIKV in rhesus monkeys. Viral escape was not detected, suggesting a relatively high bar to escape. These data demonstrate the potential for antibody-based therapy and prevention of ZIKV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization and pharmacokinetics of B10.
Fig. 2: Therapeutic and prophylactic efficacy of B10 in rhesus monkeys.

Similar content being viewed by others

References

  1. Mlakar, J. et al. N. Engl. J. Med. 374, 951–958 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Brasil, P. et al. Lancet 387, 1482 (2016).

    Article  PubMed  Google Scholar 

  3. Abbink, P. et al. Science 353, 1129–1132 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Larocca, R. A. et al. Nature 536, 474–478 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dowd, K. A. et al. Science 354, 237–240 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Pardi, N. et al. Nature 543, 248–251 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Aid, M. et al. Cell 169, 610–620.e614 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fernandez, E. et al. Nat. Immunol. 18, 1261–1269 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang, J. et al. Cell 171, 229–241.e215 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Kam, Y. W. et al. JCI Insight 2, 92428 (2017).

    Article  PubMed  Google Scholar 

  11. Sapparapu, G. et al. Nature 540, 443–447 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Magnani, D. M. et al. Sci. Transl. Med. 9, eaan8184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stettler, K. et al. Science 353, 823–826 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Bardina, S. V. et al. Science 356, 175–180 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dejnirattisai, W. et al. Nat. Immunol. 17, 1102–1108 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Barba-Spaeth, G. et al. Nature 536, 48–53 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. Dejnirattisai, W. et al. Nat. Immunol. 16, 170–177 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Rouvinski, A. et al. Nat. Commun. 8, 15411 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liu, J. et al. Science 353, 1045–1049 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Barouch, D. H. et al. Nature 503, 224–228 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Cao-Lormeau (Unit of Emerging Infectious Diseases, Institut Louis Malardé; provided Zika virus strain PF-13), E. Moseley, K. McMahan, M. Boyd, M. Kirilova, O. Nanayakkara, Z. Li, N. Mercado, A. Badamchi-Zadeh, M. Iampietro, C. Bricault, P. Gandhi, S. Khatiwada, S. Mojta, B. Alimonti, A. Chandrashekar, A. Brinkman, M. Ferguson, and W. Rinaldi for generous advice, assistance, and reagents. We acknowledge support from the US National Institutes of Health (AI124377, AI126603, AI128751, AI129797) (D.H.B.), the National Institute for Health Research Biomedical Research Centre funding scheme UK (G.R.S), MRC-Newton UK (J.M.), and the Ragon Institute of MGH, MIT, and Harvard (D.H.B.). G.R.S. is a Wellcome Trust Senior Investigator.

Author information

Authors and Affiliations

Authors

Contributions

D.H.B. and G.R.S. designed the studies. W.D., P.S., and J.M. produced and characterized the B10 antibody. R.A.L. conducted the mouse studies. P.A. and R.P. conducted the virologic assays. J.P.N. and E.N.B. conducted the monkey study and immunologic assays. D.H.B. wrote the paper with all coauthors.

Corresponding authors

Correspondence to Gavin R. Screaton or Dan H. Barouch.

Ethics declarations

Competing interests

The B10 antibody is the subject of patents held by Imperial College and Institute Pasteur on which G.R.S., W.D., and J.M. are inventors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Supplementary Figures 1–5

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbink, P., Larocca, R.A., Dejnirattisai, W. et al. Therapeutic and protective efficacy of a dengue antibody against Zika infection in rhesus monkeys. Nat Med 24, 721–723 (2018). https://doi.org/10.1038/s41591-018-0056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0056-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology