Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An inhibitor of oxidative phosphorylation exploits cancer vulnerability

Abstract

Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: IACS-010759 is a potent inhibitor of mitochondria complex I.
Fig. 2: Glycolysis-deficient and AML tumor cells are sensitive to OXPHOS inhibition.
Fig. 3: Glycolysis-deficient and AML xenografts are sensitive to OXPHOS inhibition.
Fig. 4: Inhibition of OXPHOS by IACS-010759 leads to energy deprivation and impairs nucleotide biosynthesis.
Fig. 5: IACS-010759 modulates several clinically translatable pharmacodynamic biomarkers.

References

  1. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Palaskas, N. et al. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 71, 5164–5174 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

    Article  PubMed  CAS  Google Scholar 

  5. Caro, P. et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22, 547–560 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Goto, M. et al. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Cancer Invest. 32, 241–247 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. Goto, M. et al. Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14, 76 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Haq, R. et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 23, 302–315 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hu, J. et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522–529 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23, 811–825 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Skrtić, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674–688 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sriskanthadevan, S. et al. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood 125, 2120–2130 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vazquez, F. et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Viale, A. et al. Oncogene ablation–resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bridges, H. R., Jones, A. J., Pollak, M. N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J. 462, 475–487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dykens, J. A. et al. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol. Appl. Pharmacol. 233, 203–210 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. Wang, D. S. et al. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 302, 510–515 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. Sanchez, M., Gastaldi, L., Remedi, M., Cáceres, A. & Landa, C. Rotenone-induced toxicity is mediated by Rho-GTPases in hippocampal neurons. Toxicol. Sci. 104, 352–361 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. Ellinghaus, P. et al. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med. 2, 611–624 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Li, S. H. et al. A novel mode of action of YC-1 in HIF inhibition: stimulation of FIH-dependent p300 dissociation from HIF-1α. Mol. Cancer Ther. 7, 3729–3738 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Lin, X. et al. A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation. Proc. Natl. Acad. Sci. USA 105, 174–179 (2008).

    Article  PubMed  Google Scholar 

  25. Bai, Y. et al. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J. Biol. Chem. 276, 38808–38813 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. Seo, B. B. et al. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc. Natl Acad. Sci. USA 95, 9167–9171 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. Petrova-Benedict, R., Buncic, J. R., Wallace, D. C. & Robinson, B. H. Selective killing of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. J. Inherit. Metab. Dis. 15, 943–944 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. Robinson, B. H., Petrova-Benedict, R., Buncic, J. R. & Wallace, D. C. Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem. Med. Metab. Biol. 48, 122–126 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chang, E. et al. 18F-FAZA PET imaging response tracks the reoxygenation of tumors in mice upon treatment with the mitochondrial complex I inhibitor BAY 87-2243. Clin. Cancer Res. 21, 335–346 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Krebs, H. A. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 8, 1–34 (1972).

    PubMed  CAS  Google Scholar 

  32. Hao, W., Chang, C. P., Tsao, C. C. & Xu, J. Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization. J. Biol. Chem. 285, 12647–12654 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Leonard, P. G. et al. SF2312 is a natural phosphonate inhibitor of enolase. Nat. Chem. Biol. 12, 1053–1058 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Muller, F. L. et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488, 337–342 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gaitonde, M. K., Murray, E. & Cunningham, V. J. Effect of 6-phosphogluconate on phosphoglucose isomerase in rat brain in vitro and in vivo. J. Neurochem. 52, 1348–1352 (1989).

    Article  PubMed  CAS  Google Scholar 

  36. Jeffery, C. J., Hardré, R. & Salmon, L. Crystal structure of rabbit phosphoglucose isomerase complexed with 5-phospho-d-arabinonate identifies the role of Glu357 in catalysis. Biochemistry 40, 1560–1566 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. Sukhatme, V. P. & Chan, B. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett. 586, 2389–2395 (2012).

    Article  PubMed  CAS  Google Scholar 

  38. Boultwood, J. et al. Amplification of mitochondrial DNA in acute myeloid leukaemia. Br. J. Haematol. 95, 426–431 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. Lagadinou, E. D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Samudio, I. et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 120, 142–156 (2010).

    Article  PubMed  CAS  Google Scholar 

  41. Schöckel, L. et al. Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer Metab. 3, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3, e02242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sancho, P. et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 22, 590–605 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Griss, T. et al. Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLoS Biol. 13, e1002309 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Guidance for Industry on Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers (Food and Drug Administration, Rockville, MD, USA, 2005).

  47. Kernytsky, A. et al. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood 125, 296–303 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Duncan, D. C. et al. Integrated genomic analyses identify ERRFI1 and TACC3 as glioblastoma-targeted genes. Oncotarget 1, 265–277 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Mueller, W. et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 26, 583–593 (2005).

    Article  CAS  Google Scholar 

  50. Sun, Y. et al. Metabolic and transcriptional profiling reveals pyruvate dehydrogenase kinase 4 as a mediator of epithelial-mesenchymal transition and drug resistance in tumor cells. Cancer Metab. 2, 20 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sharpley, M. S., Shannon, R. J., Draghi, F. & Hirst, J. Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45, 241–248 (2006).

    Article  PubMed  CAS  Google Scholar 

  52. Birrell, J. A., Yakovlev, G. & Hirst, J. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen. Biochemistry 48, 12005–12013 (2009).

    Article  PubMed  CAS  Google Scholar 

  53. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10, 71–73 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. Li, B. et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25, 2744–2750 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Center for Co-Clinical Trials, Institute for Applied Cancer Science, the Glioblastoma (GBM) and AML/MDS Moon Shots for intellectual and financial support. We would especially like to express our gratitude and appreciation to C. Vellano for his help editing and assembling this manuscript; F. F. Lang and J. Gumin for providing GSC models; C. Kingsley and the MDACC Small Animals Imaging Facility; and N. Satani and E. Lin for validation of antibodies and preparation of samples for analysis, D. Bigner for D423 cells and D. N. Louis for Gli56 cells. P.Mo. was supported by The Agilent Technologies Thought Leader Award. R.A.D., A.-N.A.A., R.S., and J.Hi. were supported by The Medical Research Council (MC_U105663141 and MC_UU_00015/2 to J.Hi.). M.K., S.T., A.L., P.Ma., H.M., and Q.Z. were supported by CPRIT grant RP140218. F.L.M. was supported by the CPRIT RP140612 and National Institutes of Health (NIH) Brain SPORE P50CA127001, and A.C.S. was supported by the Research Scholar Grant RSG1514501CDD. G.F.D. was supported by the American Association for Cancer Research (AACR) 14-90-25 and by the Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Grant. This work was supported in part by the Leukemia & Lymphoma Society through its Therapy Acceleration Program (TAP) and by the MD Anderson Moon Shots program.

Author information

Authors and Affiliations

Authors

Contributions

The studies were designed with input from J.R.Ma., J.R.Mo., Y.S., M.Pr., M.B., J.Ha., C.B., P.Mo., J.Hi., M.K., P.J., M.E.D.F., C.T., T.P.H., G.F.D., and F.M. In vitro experiments were performed by J.R.Ma, J.R.Mo., V.G., L.Ha., Y.T., Y.S., M.Pr., S.G., M.M., T.K., M.B., P.Mo., J.B., G.G., M.G.D., J.Ha., Y.J., T.L., H.M., P.Ma., M.Pe., R.S., T.S., M.S., V.K.H., C.C.C., and Q.Z. IACS-010759 was developed and conceived by M.E.D.F., T.M., C.C., B.C., G.L., Z.K., A.P., J.T., and P.J. In vivo studies were performed by Y-H. L., N.F., J.Ga., J.Gr., and R.M. Immunohistochemistry was performed by J. Ac., E.C., S.K., and J.R-C. Computational chemistry was performed by J.Hi. and J.B.C. Pharmacokinetic analysis was performed by S.H., Q.X., and Y.J. FACS data analysis was performed by J.R.Mo. and S.G. Glioma stem cell work was performed by Y.S., T.S., J-W.D., V.K.H, J.F.d.G., and C.C.C. Bioinformatic analysis was performed by C.B. Clinical positioning in AML was designed by M.K., N.D., J.R.Ma, M.E.D., and P.J. Metabolomic data for glycolysis deficient was generated by Y.S., C.B., and J.As. and for leukemia by J.R.Mo., S.T., A.L., and P.Mo. Stable-isotope labeling study design, analysis and interpretation was performed by P. Mo. Mouse complex I assays were designed and performed by J.Hi., A.-N.A.A., and R.S. Normal bone marrow samples were provided by S.C. and G.A-A. Writing and preparation of the manuscript and figures were performed by J.R.Ma., J.R.Mo., T.P.H., R.A.D., A.D., Y.S., M.E.D.F., M.K., P. Mo., and P.J.

Corresponding author

Correspondence to Joseph R. Marszalek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16, Supplementary Tables 1–4 and Supplementary Note

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molina, J.R., Sun, Y., Protopopova, M. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 24, 1036–1046 (2018). https://doi.org/10.1038/s41591-018-0052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0052-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing