Article | Published:

An inhibitor of oxidative phosphorylation exploits cancer vulnerability

Nature Medicinevolume 24pages10361046 (2018) | Download Citation


Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

  2. 2.

    Palaskas, N. et al. 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 71, 5164–5174 (2011).

  3. 3.

    DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

  4. 4.

    Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

  5. 5.

    Caro, P. et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22, 547–560 (2012).

  6. 6.

    Goto, M. et al. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Cancer Invest. 32, 241–247 (2014).

  7. 7.

    Goto, M. et al. Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14, 76 (2014).

  8. 8.

    Haq, R. et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 23, 302–315 (2013).

  9. 9.

    Hu, J. et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522–529 (2013).

  10. 10.

    Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23, 811–825 (2013).

  11. 11.

    Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

  12. 12.

    Skrtić, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674–688 (2011).

  13. 13.

    Sriskanthadevan, S. et al. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood 125, 2120–2130 (2015).

  14. 14.

    Vazquez, F. et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013).

  15. 15.

    Viale, A. et al. Oncogene ablation–resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

  16. 16.

    Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

  17. 17.

    Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

  18. 18.

    Bridges, H. R., Jones, A. J., Pollak, M. N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J. 462, 475–487 (2014).

  19. 19.

    Dykens, J. A. et al. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol. Appl. Pharmacol. 233, 203–210 (2008).

  20. 20.

    Wang, D. S. et al. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 302, 510–515 (2002).

  21. 21.

    Sanchez, M., Gastaldi, L., Remedi, M., Cáceres, A. & Landa, C. Rotenone-induced toxicity is mediated by Rho-GTPases in hippocampal neurons. Toxicol. Sci. 104, 352–361 (2008).

  22. 22.

    Ellinghaus, P. et al. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med. 2, 611–624 (2013).

  23. 23.

    Li, S. H. et al. A novel mode of action of YC-1 in HIF inhibition: stimulation of FIH-dependent p300 dissociation from HIF-1α. Mol. Cancer Ther. 7, 3729–3738 (2008).

  24. 24.

    Lin, X. et al. A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation. Proc. Natl. Acad. Sci. USA 105, 174–179 (2008).

  25. 25.

    Bai, Y. et al. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J. Biol. Chem. 276, 38808–38813 (2001).

  26. 26.

    Seo, B. B. et al. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc. Natl Acad. Sci. USA 95, 9167–9171 (1998).

  27. 27.

    Petrova-Benedict, R., Buncic, J. R., Wallace, D. C. & Robinson, B. H. Selective killing of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. J. Inherit. Metab. Dis. 15, 943–944 (1992).

  28. 28.

    Robinson, B. H., Petrova-Benedict, R., Buncic, J. R. & Wallace, D. C. Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem. Med. Metab. Biol. 48, 122–126 (1992).

  29. 29.

    Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

  30. 30.

    Chang, E. et al. 18F-FAZA PET imaging response tracks the reoxygenation of tumors in mice upon treatment with the mitochondrial complex I inhibitor BAY 87-2243. Clin. Cancer Res. 21, 335–346 (2015).

  31. 31.

    Krebs, H. A. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 8, 1–34 (1972).

  32. 32.

    Hao, W., Chang, C. P., Tsao, C. C. & Xu, J. Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization. J. Biol. Chem. 285, 12647–12654 (2010).

  33. 33.

    Leonard, P. G. et al. SF2312 is a natural phosphonate inhibitor of enolase. Nat. Chem. Biol. 12, 1053–1058 (2016).

  34. 34.

    Muller, F. L. et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488, 337–342 (2012).

  35. 35.

    Gaitonde, M. K., Murray, E. & Cunningham, V. J. Effect of 6-phosphogluconate on phosphoglucose isomerase in rat brain in vitro and in vivo. J. Neurochem. 52, 1348–1352 (1989).

  36. 36.

    Jeffery, C. J., Hardré, R. & Salmon, L. Crystal structure of rabbit phosphoglucose isomerase complexed with 5-phospho-d-arabinonate identifies the role of Glu357 in catalysis. Biochemistry 40, 1560–1566 (2001).

  37. 37.

    Sukhatme, V. P. & Chan, B. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett. 586, 2389–2395 (2012).

  38. 38.

    Boultwood, J. et al. Amplification of mitochondrial DNA in acute myeloid leukaemia. Br. J. Haematol. 95, 426–431 (1996).

  39. 39.

    Lagadinou, E. D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013).

  40. 40.

    Samudio, I. et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 120, 142–156 (2010).

  41. 41.

    Schöckel, L. et al. Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer Metab. 3, 11 (2015).

  42. 42.

    Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

  43. 43.

    Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3, e02242 (2014).

  44. 44.

    Sancho, P. et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 22, 590–605 (2015).

  45. 45.

    Griss, T. et al. Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLoS Biol. 13, e1002309 (2015).

  46. 46.

    Guidance for Industry on Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers (Food and Drug Administration, Rockville, MD, USA, 2005).

  47. 47.

    Kernytsky, A. et al. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood 125, 296–303 (2015).

  48. 48.

    Duncan, D. C. et al. Integrated genomic analyses identify ERRFI1 and TACC3 as glioblastoma-targeted genes. Oncotarget 1, 265–277 (2010).

  49. 49.

    Mueller, W. et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 26, 583–593 (2005).

  50. 50.

    Sun, Y. et al. Metabolic and transcriptional profiling reveals pyruvate dehydrogenase kinase 4 as a mediator of epithelial-mesenchymal transition and drug resistance in tumor cells. Cancer Metab. 2, 20 (2014).

  51. 51.

    Sharpley, M. S., Shannon, R. J., Draghi, F. & Hirst, J. Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45, 241–248 (2006).

  52. 52.

    Birrell, J. A., Yakovlev, G. & Hirst, J. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen. Biochemistry 48, 12005–12013 (2009).

  53. 53.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

  54. 54.

    Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10, 71–73 (2013).

  55. 55.

    Li, B. et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25, 2744–2750 (2009).

  56. 56.

    Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).

Download references


We thank members of the Center for Co-Clinical Trials, Institute for Applied Cancer Science, the Glioblastoma (GBM) and AML/MDS Moon Shots for intellectual and financial support. We would especially like to express our gratitude and appreciation to C. Vellano for his help editing and assembling this manuscript; F. F. Lang and J. Gumin for providing GSC models; C. Kingsley and the MDACC Small Animals Imaging Facility; and N. Satani and E. Lin for validation of antibodies and preparation of samples for analysis, D. Bigner for D423 cells and D. N. Louis for Gli56 cells. P.Mo. was supported by The Agilent Technologies Thought Leader Award. R.A.D., A.-N.A.A., R.S., and J.Hi. were supported by The Medical Research Council (MC_U105663141 and MC_UU_00015/2 to J.Hi.). M.K., S.T., A.L., P.Ma., H.M., and Q.Z. were supported by CPRIT grant RP140218. F.L.M. was supported by the CPRIT RP140612 and National Institutes of Health (NIH) Brain SPORE P50CA127001, and A.C.S. was supported by the Research Scholar Grant RSG1514501CDD. G.F.D. was supported by the American Association for Cancer Research (AACR) 14-90-25 and by the Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Grant. This work was supported in part by the Leukemia & Lymphoma Society through its Therapy Acceleration Program (TAP) and by the MD Anderson Moon Shots program.

Author information

Author notes

    • Pietro Morlacchi

    Present address: Agilent Technologies Inc., Lexington, MA, USA

  1. These authors contributed equally: Jennifer R. Molina, Yuting Sun, Philip Jones, M. Emilia Di Francesco, Joseph R. Marszalek.


  1. Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Jennifer R. Molina
    • , Yuting Sun
    • , Marina Protopopova
    • , Sonal Gera
    • , Madhavi Bandi
    • , Christopher Bristow
    • , Timothy McAfoos
    • , Pietro Morlacchi
    • , Jennifer Bardenhagen
    • , Christopher Carroll
    • , Edward Chang
    • , Jason B. Cross
    • , Barbara Czako
    • , Angela Deem
    • , Ningping Feng
    • , Guang Gao
    • , Jason Gay
    • , Mary Geck Do
    • , Jennifer Greer
    • , Virginia Giuliani
    • , Jing Han
    • , Sha Huang
    • , Yongying Jiang
    • , Zhijun Kang
    • , Tin Khor
    • , Gang Liu
    • , Timothy Lofton
    • , Mikhila Mahendra
    • , Robert Mullinax
    • , Michael Peoples
    • , Alessia Petrocchi
    • , Thomas Shi
    • , Melinda Smith
    • , Jay Theroff
    • , Quanyun Xu
    • , Carlo Toniatti
    • , Giulio F. Draetta
    • , Timothy P. Heffernan
    • , Philip Jones
    • , M. Emilia Di Francesco
    •  & Joseph R. Marszalek
  2. Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Jennifer R. Molina
    • , Yuting Sun
    • , Marina Protopopova
    • , Sonal Gera
    • , Madhavi Bandi
    • , Christopher Bristow
    • , Edward Chang
    • , Angela Deem
    • , Ningping Feng
    • , Guang Gao
    • , Jason Gay
    • , Virginia Giuliani
    • , Jing Han
    • , Tin Khor
    • , Mikhila Mahendra
    • , Robert Mullinax
    • , Michael Peoples
    • , Thomas Shi
    • , Melinda Smith
    • , Carlo Toniatti
    • , Giulio F. Draetta
    • , Timothy P. Heffernan
    •  & Joseph R. Marszalek
  3. Department of Cancer Imaging Systems, University of Texas MD Cancer Center, Houston, TX, USA

    • Jeffrey Ackroyd
    • , Yu-Hsi Lin
    •  & Florian Muller
  4. Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge, UK

    • Ahmed-Noor A. Agip
    • , Judy Hirst
    •  & Riccardo Serreli
  5. Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Gheath Al-Atrash
    •  & Stefan Ciurea
  6. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

    • John Asara
  7. Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Caroline C. Carrillo
    • , John Frederick de Groot
    • , Jian-Wen Dong
    •  & Verlene K. Henry
  8. Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Naval Daver
    • , Lina Han
    • , Helen Ma
    • , Polina Matre
    • , Yoko Tabe
    • , Qi Zhang
    •  & Marina Konopleva
  9. Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Sergej Konoplev
  10. Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA

    • Alessia Lodi
    •  & Stefano Tiziani
  11. Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Jaime Rodriguez-Canale
  12. Department of Next Generation Hematology Laboratory Medicine, Department of Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan

    • Yoko Tabe
  13. Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Ronald A. DePinho
  14. Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Giulio F. Draetta


  1. Search for Jennifer R. Molina in:

  2. Search for Yuting Sun in:

  3. Search for Marina Protopopova in:

  4. Search for Sonal Gera in:

  5. Search for Madhavi Bandi in:

  6. Search for Christopher Bristow in:

  7. Search for Timothy McAfoos in:

  8. Search for Pietro Morlacchi in:

  9. Search for Jeffrey Ackroyd in:

  10. Search for Ahmed-Noor A. Agip in:

  11. Search for Gheath Al-Atrash in:

  12. Search for John Asara in:

  13. Search for Jennifer Bardenhagen in:

  14. Search for Caroline C. Carrillo in:

  15. Search for Christopher Carroll in:

  16. Search for Edward Chang in:

  17. Search for Stefan Ciurea in:

  18. Search for Jason B. Cross in:

  19. Search for Barbara Czako in:

  20. Search for Angela Deem in:

  21. Search for Naval Daver in:

  22. Search for John Frederick de Groot in:

  23. Search for Jian-Wen Dong in:

  24. Search for Ningping Feng in:

  25. Search for Guang Gao in:

  26. Search for Jason Gay in:

  27. Search for Mary Geck Do in:

  28. Search for Jennifer Greer in:

  29. Search for Virginia Giuliani in:

  30. Search for Jing Han in:

  31. Search for Lina Han in:

  32. Search for Verlene K. Henry in:

  33. Search for Judy Hirst in:

  34. Search for Sha Huang in:

  35. Search for Yongying Jiang in:

  36. Search for Zhijun Kang in:

  37. Search for Tin Khor in:

  38. Search for Sergej Konoplev in:

  39. Search for Yu-Hsi Lin in:

  40. Search for Gang Liu in:

  41. Search for Alessia Lodi in:

  42. Search for Timothy Lofton in:

  43. Search for Helen Ma in:

  44. Search for Mikhila Mahendra in:

  45. Search for Polina Matre in:

  46. Search for Robert Mullinax in:

  47. Search for Michael Peoples in:

  48. Search for Alessia Petrocchi in:

  49. Search for Jaime Rodriguez-Canale in:

  50. Search for Riccardo Serreli in:

  51. Search for Thomas Shi in:

  52. Search for Melinda Smith in:

  53. Search for Yoko Tabe in:

  54. Search for Jay Theroff in:

  55. Search for Stefano Tiziani in:

  56. Search for Quanyun Xu in:

  57. Search for Qi Zhang in:

  58. Search for Florian Muller in:

  59. Search for Ronald A. DePinho in:

  60. Search for Carlo Toniatti in:

  61. Search for Giulio F. Draetta in:

  62. Search for Timothy P. Heffernan in:

  63. Search for Marina Konopleva in:

  64. Search for Philip Jones in:

  65. Search for M. Emilia Di Francesco in:

  66. Search for Joseph R. Marszalek in:


The studies were designed with input from J.R.Ma., J.R.Mo., Y.S., M.Pr., M.B., J.Ha., C.B., P.Mo., J.Hi., M.K., P.J., M.E.D.F., C.T., T.P.H., G.F.D., and F.M. In vitro experiments were performed by J.R.Ma, J.R.Mo., V.G., L.Ha., Y.T., Y.S., M.Pr., S.G., M.M., T.K., M.B., P.Mo., J.B., G.G., M.G.D., J.Ha., Y.J., T.L., H.M., P.Ma., M.Pe., R.S., T.S., M.S., V.K.H., C.C.C., and Q.Z. IACS-010759 was developed and conceived by M.E.D.F., T.M., C.C., B.C., G.L., Z.K., A.P., J.T., and P.J. In vivo studies were performed by Y-H. L., N.F., J.Ga., J.Gr., and R.M. Immunohistochemistry was performed by J. Ac., E.C., S.K., and J.R-C. Computational chemistry was performed by J.Hi. and J.B.C. Pharmacokinetic analysis was performed by S.H., Q.X., and Y.J. FACS data analysis was performed by J.R.Mo. and S.G. Glioma stem cell work was performed by Y.S., T.S., J-W.D., V.K.H, J.F.d.G., and C.C.C. Bioinformatic analysis was performed by C.B. Clinical positioning in AML was designed by M.K., N.D., J.R.Ma, M.E.D., and P.J. Metabolomic data for glycolysis deficient was generated by Y.S., C.B., and J.As. and for leukemia by J.R.Mo., S.T., A.L., and P.Mo. Stable-isotope labeling study design, analysis and interpretation was performed by P. Mo. Mouse complex I assays were designed and performed by J.Hi., A.-N.A.A., and R.S. Normal bone marrow samples were provided by S.C. and G.A-A. Writing and preparation of the manuscript and figures were performed by J.R.Ma., J.R.Mo., T.P.H., R.A.D., A.D., Y.S., M.E.D.F., M.K., P. Mo., and P.J.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Joseph R. Marszalek.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–16, Supplementary Tables 1–4 and Supplementary Note

  2. Reporting Summary

About this article

Publication history





Further reading

  • Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer

    • Yonathan Lissanu Deribe
    • , Yuting Sun
    • , Christopher Terranova
    • , Fatima Khan
    • , Juan Martinez-Ledesma
    • , Jason Gay
    • , Guang Gao
    • , Robert A. Mullinax
    • , Tin Khor
    • , Ningping Feng
    • , Yu-Hsi Lin
    • , Chia-Chin Wu
    • , Claudia Reyes
    • , Qian Peng
    • , Frederick Robinson
    • , Akira Inoue
    • , Veena Kochat
    • , Chang-Gong Liu
    • , John M. Asara
    • , Cesar Moran
    • , Florian Muller
    • , Jing Wang
    • , Bingliang Fang
    • , Vali Papadimitrakopoulou
    • , Ignacio I. Wistuba
    • , Kunal Rai
    • , Joseph Marszalek
    •  & P. Andrew Futreal

    Nature Medicine (2018)