Abstract

Detyrosinated microtubules provide mechanical resistance that can impede the motion of contracting cardiomyocytes. However, the functional effects of microtubule detyrosination in heart failure or in human hearts have not previously been studied. Here, we utilize mass spectrometry and single-myocyte mechanical assays to characterize changes to the cardiomyocyte cytoskeleton and their functional consequences in human heart failure. Proteomic analysis of left ventricle tissue reveals a consistent upregulation and stabilization of intermediate filaments and microtubules in failing human hearts. As revealed by super-resolution imaging, failing cardiomyocytes are characterized by a dense, heavily detyrosinated microtubule network, which is associated with increased myocyte stiffness and impaired contractility. Pharmacological suppression of detyrosinated microtubules lowers the viscoelasticity of failing myocytes and restores 40–50% of lost contractile function; reduction of microtubule detyrosination using a genetic approach also softens cardiomyocytes and improves contractile kinetics. Together, these data demonstrate that a modified cytoskeletal network impedes contractile function in cardiomyocytes from failing human hearts and that targeting detyrosinated microtubules could represent a new inotropic strategy for improving cardiac function.

  • Subscribe to Nature Medicine for full access:

    $225

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Tsutsui, H., Ishihara, K. & Cooper, G. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 260, 682–687 (1993).

  2. 2.

    Collins, J. F. et al. The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure. J. Mol. Cell. Cardiol. 28, 1435–1443 (1996).

  3. 3.

    Tagawa, H. et al. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Cir. Res. 82, 751–761 (1998).

  4. 4.

    Ishibashi, Y. et al. Role of microtubules in myocyte contractile dysfunction during cardiac hypertrophy in the rat. Am. J. Physiol. 271, H1978–87 (1996).

  5. 5.

    Bailey, B. A., Dipla, K., Li, S. & Houser, S. R. Cellular basis of contractile derangements of hypertrophied feline ventricular myocytes. J. Mol. Cell. Cardiol. 29, 1823–1835 (1997).

  6. 6.

    Kerr, J. P. et al. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat. Commun. 6, 8526 (2015).

  7. 7.

    Robison, P. et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352, aaf0659 (2016).

  8. 8.

    Robison, P. & Prosser, B. L. Microtubule mechanics in the working myocyte. J. Physiol. 595, 3931–3937 (2017).

  9. 9.

    Agnetti, G. et al. Desmin modifications associate with amyloid-like oligomers deposition in heart failure. Cardiovasc. Res. 102, 24–34 (2014).

  10. 10.

    Burke, M. A. et al. Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight 1, e86898 (2016).

  11. 11.

    Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–11 (2009).

  12. 12.

    Frolova, E. G. et al. Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J. 26, 2363–2373 (2012).

  13. 13.

    Wulfkuhle, J. D. et al. Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals. J. Cell Sci. 112, 2125–2136 (1999).

  14. 14.

    Takahashi, M. et al. Phenotypic consequences of beta1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2072–83 (2003).

  15. 15.

    Cheng, G. et al. Basis for MAP4 dephosphorylation-related microtubule network densification in pressure overload cardiac hypertrophy. J. Biol. Chem. 285, 38125–38140 (2010).

  16. 16.

    Prota, A. E. et al. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J. Cell Biol. 200, 259–270 (2013).

  17. 17.

    Prins, K. W. et al. Dystrophin is a microtubule-associated protein. J. Cell Biol. 186, 363–369 (2009).

  18. 18.

    Caporizzo, M. A. et al. Strain-rate dependence of elastic modulus reveals silver nanoparticle induced cytotoxicity. Nanobiomedicine (Rij) 2, 9 (2015).

  19. 19.

    Gomez, A. M., Kerfant, B. G. & Vassort, G. Microtubule disruption modulates Ca2+ signaling in rat cardiac myocytes. Circ. Res. 86, 30–36 (2000).

  20. 20.

    Janke, C. & Bulinski, J. C. Post-translational regulation of the microtubule cytoskeleton: Mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773–786 (2011).

  21. 21.

    Zile, M. R. et al. Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy. J. Am. Coll. Cardiol. 37, 1080–1084 (2001).

  22. 22.

    Zhang, C. et al. Microtubule-mediated defects in junctophilin-2 trafficking contribute to myocyte T-tubule remodeling and Ca2+ handling dysfunction in heart failure. Circulation 129, 1742–1750 (2014).

  23. 23.

    Stones, R., Benoist, D., Peckham, M. & White, E. Microtubule proliferation in right ventricular myocytes of rats with monocrotaline-induced pulmonary hypertension. J. Mol. Cell. Cardiol. 56, 91–96 (2013).

  24. 24.

    Prins, K. W. et al. Colchicine depolymerizes microtubules, increases junctophilin-2, and improves right ventricular function in experimental pulmonary arterial hypertension. J. Am. Heart Assoc. 6, e006195 (2017).

  25. 25.

    Lemler, M. S. et al. Myocyte cytoskeletal disorganization and right heart failure in hypoxia-induced neonatal pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 279, H1365–76 (2000).

  26. 26.

    Prosser, B. L., Ward, C. W. & Lederer, W. J. X-ROS signaling: Rapid mechano-chemo transduction in heart. Science 333, 1440–1445 (2011).

  27. 27.

    Prins, K. W., Asp, M. L., Zhang, H., Wang, W. & Metzger, J. M. Microtubule-mediated misregulation of junctophilin-2 underlies T-tubule disruptions and calcium mishandling in mdx mice. JACC: Basic Transl. Sci. 1, 122–130 (2016).

  28. 28.

    Shiels, H. et al. Stable microtubules contribute to cardiac dysfunction in the streptozotocin-induced model of type 1 diabetes in the rat. Mol. Cell. Biochem. 294, 173–180 (2007).

  29. 29.

    Wang, X., Li, F., Campbell, S. E. & Gerdes, A. M. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: II. Cytoskeletal remodeling. J. Mol. Cell. Cardiol. 31, 319–331 (1999).

  30. 30.

    Miragoli, M. et al. Microtubule-dependent mitochondria alignment regulates calcium release in response to nanomechanical stimulus in heart myocytes. Cell Rep. 14, 140–151 (2016).

  31. 31.

    Rochdi, M., Sabouraud, A., Girre, C., Venet, R. & Scherrmann, J. M. Pharmacokinetics and absolute bioavailability of colchicine after i.v. and oral administration in healthy human volunteers and elderly subjects. Eur. J. Clin. Pharmacol. 46, 351–354 (1994).

  32. 32.

    Terkeltaub, R. A. Clinical practice: gout. N. Engl. J. Med. 349, 1647–1655 (2003).

  33. 33.

    Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 62, e147–239 (2013).

  34. 34.

    Cuffe, M. S. et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: A randomized controlled trial. JAMA 287, 1541–1547 (2002).

  35. 35.

    Lang, R. M. et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. 7, 79–108 (2006).

  36. 36.

    Dipla, K., Mattiello, J. A., Jeevanandam, V., Houser, S. R. & Margulies, K. B. Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation 97, 2316–2322 (1998).

  37. 37.

    Simithy, J. et al. Characterization of histone acylations links chromatin modifications with metabolism. Nat. Commun. 8, 1141 (2017).

  38. 38.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

  39. 39.

    Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

  40. 40.

    Vizcaíno, J. A. et al. 2016 update of the PRIDE database and related tools. Nucleic Acids Res. 44, 447–456 (2016).

Download references

Acknowledgements

We would like thank the Quantitative Proteomics Resource Core of the Perelman School of Medicine and the Penn Center for Musculoskeletal Disorders Histology Core at the University of Pennsylvania. This work was supported by funding from the National Institutes of Health (NIH) R01-HL133080 to B.L.P. and T32 R05346-09 to P.R., the American Heart Association 17POST33440043 to M.A.C., and by the Center for Engineering MechanoBiology through a grant from the National Science Foundation’s Science and Technology Center program: 15-48571. The procurement of human heart tissue was enabled by grants from the NIH (HL089847 and HL105993) to K.B.M.

Author information

Affiliations

  1. Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

    • Christina Yingxian Chen
    • , Matthew A. Caporizzo
    • , Alexey I. Bogush
    • , Patrick Robison
    • , Julie G. Heffler
    • , Alex K. Salomon
    • , Neil A. Kelly
    • , Kenneth B. Margulies
    •  & Benjamin L. Prosser
  2. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

    • Kenneth Bedi
    • , Alexia Vite
    • , Apoorva Babu
    • , Michael P. Morley
    •  & Kenneth B. Margulies
  3. Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

    • Apoorva Babu
    • , Michael P. Morley
    • , Kenneth B. Margulies
    •  & Benjamin L. Prosser

Authors

  1. Search for Christina Yingxian Chen in:

  2. Search for Matthew A. Caporizzo in:

  3. Search for Kenneth Bedi in:

  4. Search for Alexia Vite in:

  5. Search for Alexey I. Bogush in:

  6. Search for Patrick Robison in:

  7. Search for Julie G. Heffler in:

  8. Search for Alex K. Salomon in:

  9. Search for Neil A. Kelly in:

  10. Search for Apoorva Babu in:

  11. Search for Michael P. Morley in:

  12. Search for Kenneth B. Margulies in:

  13. Search for Benjamin L. Prosser in:

Contributions

B.L.P., C.Y.C., M.A.C., and K.B.M. designed the study. B.L.P., C.Y.C., M.A.C., K.B., A.V., N.A.K., A.I.B., P.R., J.G.H., and A.K.S. carried out the data acquisition and analysis. M.P.M., C.Y.C., A.B., and B.L.P. carried out the proteomic analysis. B.L.P., C.Y.C., M.A.C., P.R., and K.B.M. interpreted the data. B.L.P. and C.Y.C. prepared the manuscript. All authors participated in the critical review and revision of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Benjamin L. Prosser.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–6

  2. Reporting Summary

  3. Supplementary Tables

    Supplementary Tables 1–6

  4. Supplementary Video 1

    Skeletonized 3D reconstruction of the microtubule network from Airyscan imaging of a failing human myocyte (DCM) labeled with Tyr-tubulin antibody to demonstrate the density of the microtubule network

  5. Supplementary Video 2

    Microtubule buckling in a contracting non-failing myocyte infected with AdV-EMTB for 48 h

  6. Supplementary Video 3

    Microtubule buckling in a contracting failing myocyte (DCM) infected with AdV-EMTB for 48 h

  7. Supplementary Data

    Spreadsheet of mass spectrometry data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41591-018-0046-2

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.