Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood

Abstract

Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and corresponds with a high degree of comorbidities and economic burden. How PCOS is passed on from one generation to the next is not clear, but it may be a developmental condition. Most women with PCOS exhibit higher levels of circulating luteinizing hormone, suggestive of heightened gonadotropin-releasing hormone (GnRH) release, and anti-Müllerian hormone (AMH) as compared to healthy women. Excess AMH in utero may affect the development of the female fetus. However, as AMH levels drop during pregnancy in women with normal fertility, it was unclear whether their levels were also elevated in pregnant women with PCOS. Here we measured AMH in a cohort of pregnant women with PCOS and control pregnant women and found that AMH is significantly more elevated in the former group versus the latter. To determine whether the elevation of AMH during pregnancy in women with PCOS is a bystander effect or a driver of the condition in the offspring, we modeled our clinical findings by treating pregnant mice with AMH and followed the neuroendocrine phenotype of their female progeny postnatally. This treatment resulted in maternal neuroendocrine-driven testosterone excess and diminished placental metabolism of testosterone to estradiol, resulting in a masculinization of the exposed female fetus and a PCOS-like reproductive and neuroendocrine phenotype in adulthood. We found that the affected females had persistently hyperactivated GnRH neurons and that GnRH antagonist treatment in the adult female offspring restored their neuroendocrine phenotype to a normal state. These findings highlight a critical role for excess prenatal AMH exposure and subsequent aberrant GnRH receptor signaling in the neuroendocrine dysfunctions of PCOS, while offering a new potential therapeutic avenue to treat the condition during adulthood.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AMH levels during the second trimester of gestation are higher in women with PCOS than controls.
Fig. 2: Prenatal AMH treatment disrupts estrous cyclicity, ovarian morphology, and fertility in adult offspring.
Fig. 3: Prenatal AMH treatment leads to hyperandrogenism and elevation in LH secretion and pulsatility.
Fig. 4: Prenatal AMH treatment increases perinatal T levels in females and masculinizes their brains.
Fig. 5: PAMH GnRH-GFP mice exhibit higher GnRH dendritic spine density, increased GABAergic appositions to GnRH neurons, and elevated firing frequency of GnRH neurons in adulthood.
Fig. 6: Postnatal GnRH antagonist treatment of PAMH mice restores the PCOS-like neuroendocrine phenotype.

Similar content being viewed by others

References

  1. Norman, R. J., Dewailly, D., Legro, R. S. & Hickey, T. E. Polycystic ovary syndrome. Lancet 370, 685–697 (2007).

    Article  PubMed  CAS  Google Scholar 

  2. Goodarzi, M. O., Dumesic, D. A., Chazenbalk, G. & Azziz, R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7, 219–231 (2011).

    Article  PubMed  CAS  Google Scholar 

  3. Jayasena, C. N. & Franks, S. The management of patients with polycystic ovary syndrome. Nat. Rev. Endocrinol. 10, 624–636 (2014).

    Article  PubMed  Google Scholar 

  4. March, W. A. et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 25, 544–551 (2010).

    Article  PubMed  Google Scholar 

  5. Wild, R. A. et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 95, 2038–2049 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. Dumesic, D. A. & Lobo, R. A. Cancer risk and PCOS. Steroids 78, 782–785 (2013).

    Article  PubMed  CAS  Google Scholar 

  7. Cook, C. L., Siow, Y., Brenner, A. G. & Fallat, M. E. Relationship between serum Müllerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women. Fertil. Steril. 77, 141–146 (2002).

    Article  PubMed  Google Scholar 

  8. Pigny, P., Jonard, S., Robert, Y. & Dewailly, D. Serum anti-Mullerian hormone as a surrogate for antral follicle count for definition of the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91, 941–945 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. Pellatt, L. et al. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. J. Clin. Endocrinol. Metab. 92, 240–245 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. Pigny, P. et al. Elevated serum level of anti-Mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J. Clin. Endocrinol. Metab. 88, 5957–5962 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Cimino, I. et al. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat. Commun. 7, 10055 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chang, R. J. The reproductive phenotype in polycystic ovary syndrome. Nat. Clin. Pract. Endocrinol. Metab. 3, 688–695 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. McAllister, J. M., Legro, R. S., Modi, B. P. & Strauss, J. F. III Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol. Metab. 26, 118–124 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sir-Petermann, T. et al. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92, 4637–4642 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Köninger, A. et al. Anti-Mullerian-hormone levels during pregnancy and postpartum. Reprod. Biol. Endocrinol. 11, 60 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. La Marca, A., Giulini, S., Orvieto, R., De Leo, V. & Volpe, A. Anti-Müllerian hormone concentrations in maternal serum during pregnancy. Hum. Reprod. 20, 1569–1572 (2005).

    Article  PubMed  Google Scholar 

  17. Sullivan, S. D. & Moenter, S. M. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc. Natl. Acad. Sci. USA 101, 7129–7134 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Moore, A. M., Prescott, M. & Campbell, R. E. Estradiol negative and positive feedback in a prenatal androgen-induced mouse model of polycystic ovarian syndrome. Endocrinology 154, 796–806 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. Moore, A. M., Prescott, M., Marshall, C. J., Yip, S. H. & Campbell, R. E. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome. Proc. Natl. Acad. Sci. USA 112, 596–601 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Orvis, G. D. & Behringer, R. R. Cellular mechanisms of Müllerian duct formation in the mouse. Dev. Biol. 306, 493–504 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pinski, J. et al. Chronic administration of the luteinizing hormone-releasing hormone (LHRH) antagonist cetrorelix decreases gonadotrope responsiveness and pituitary LHRH receptor messenger ribonucleic acid levels in rats. Endocrinology 137, 3430–3436 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. Halmos, G., Schally, A. V., Pinski, J., Vadillo-Buenfil, M. & Groot, K. Down-regulation of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) in rats by LH-RH antagonist cetrorelix. Proc. Natl. Acad. Sci. USA 93, 2398–2402 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Duijkers, I. J. et al. Single and multiple dose pharmacokinetics and pharmacodynamics of the gonadotrophin-releasing hormone antagonist cetrorelix in healthy female volunteers. Hum. Reprod. 13, 2392–2398 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. Novembri, R. et al. Placenta expresses anti-Müllerian hormone and its receptor: sex-related difference in fetal membranes. Placenta 36, 731–737 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Simerly, R. B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci. 25, 507–536 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D. & De Vries, G. J. Sex differences in the brain: the not so inconvenient truth. J. Neurosci. 32, 2241–2247 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Corbier, P., Edwards, D. A. & Roffi, J. The neonatal testosterone surge: a comparative study. Arch. Int. Physiol. Biochim. Biophys. 100, 127–131 (1992).

    PubMed  CAS  Google Scholar 

  28. Clarkson, J. & Herbison, A. E. Hypothalamic control of the male neonatal testosterone surge. Phil. Trans. R. Soc. Lond. B 371, 20150115 (2016).

    Article  CAS  Google Scholar 

  29. Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Simerly, R. B. Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Brain Res. Mol. Brain Res. 6, 297–310 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. Clarkson, J. & Herbison, A. E. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147, 5817–5825 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. De Vries, G. J. & Panzica, G. C. Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience 138, 947–955 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. Herbison, A. E. & Moenter, S. M. Depolarising and hyperpolarising actions of GABA(A) receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J. Neuroendocrinol. 23, 557–569 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Piltonen, T. et al. Serum anti-Müllerian hormone levels remain high until late reproductive age and decrease during metformin therapy in women with polycystic ovary syndrome. Hum. Reprod. 20, 1820–1826 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. Sir-Petermann, T. et al. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum. Reprod. 17, 2573–2579 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. Schaeffer, M. et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc. Natl. Acad. Sci. USA 110, 1512–1517 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. https://doi.org/10.1210/er.2017-00235 (2018).

  38. Herde, M. K., Geist, K., Campbell, R. E. & Herbison, A. E. Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood-brain barrier. Endocrinology 152, 3832–3841 (2011).

    Article  PubMed  CAS  Google Scholar 

  39. Ragin, R. C., Donahoe, P. K., Kenneally, M. K., Ahmad, M. F. & MacLaughlin, D. T. Human müllerian inhibiting substance: enhanced purification imparts biochemical stability and restores antiproliferative effects. Protein Expr. Purif. 3, 236–245 (1992).

    Article  PubMed  CAS  Google Scholar 

  40. Pankhurst, M. W. & McLennan, I. S. Human blood contains both the uncleaved precursor of anti-Mullerian hormone and a complex of the NH2- and COOH-terminal peptides. Am. J. Physiol. Endocrinol. Metab. 305, E1241–E1247 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Pankhurst, M. W., Chong, Y. H. & McLennan, I. S. Relative levels of the proprotein and cleavage-activated form of circulating human anti-Müllerian hormone are sexually dimorphic and variable during the life cycle. Physiol. Rep. 4, e12783 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Roland, A. V. & Moenter, S. M. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front. Neuroendocrinol. 35, 494–511 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Moore, A. M. & Campbell, R. E. Polycystic ovary syndrome: Understanding the role of the brain. Front. Neuroendocrinol. 46, 1–14 (2017).

    Article  PubMed  Google Scholar 

  44. Abbott, D. H. et al. Nonhuman primate models of polycystic ovary syndrome. Mol. Cell. Endocrinol. 373, 21–28 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Abbott, D. H. et al. Clustering of PCOS-like traits in naturally hyperandrogenic female rhesus monkeys. Hum. Reprod. 32, 923–936 (2017).

    Article  PubMed  CAS  Google Scholar 

  46. Maliqueo, M. et al. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 166, 151–155 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Katulski, K., Czyzyk, A., Podfigurna-Stopa, A., Genazzani, A. R. & Meczekalski, B. Pregnancy complications in polycystic ovary syndrome patients. Gynecol. Endocrinol. 31, 87–91 (2015).

    Article  PubMed  Google Scholar 

  48. Maliqueo, M. et al. Placental STAT3 signaling is activated in women with polycystic ovary syndrome. Hum. Reprod. 30, 692–700 (2015).

    Article  PubMed  CAS  Google Scholar 

  49. Huang, X. & Harlan, R. E. Absence of androgen receptors in LHRH immunoreactive neurons. Brain Res. 624, 309–311 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. DeFazio, R. A. & Moenter, S. M. Estradiol feedback alters potassium currents and firing properties of gonadotropin-releasing hormone neurons. Mol. Endocrinol. 16, 2255–2265 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. Huang, C. C. et al. Symptom patterns and phenotypic subgrouping of women with polycystic ovary syndrome: association between endocrine characteristics and metabolic aberrations. Hum. Reprod. 30, 937–946 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Rebar, R. et al. Characterization of the inappropriate gonadotropin secretion in polycystic ovary syndrome. J. Clin. Invest. 57, 1320–1329 (1976).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chang, R. J., Mandel, F. P., Lu, J. K. & Judd, H. L. Enhanced disparity of gonadotropin secretion by estrone in women with polycystic ovarian disease. J. Clin. Endocrinol. Metab. 54, 490–494 (1982).

    Article  PubMed  CAS  Google Scholar 

  54. Roland, A. V., Nunemaker, C. S., Keller, S. R. & Moenter, S. M. Prenatal androgen exposure programs metabolic dysfunction in female mice. J. Endocrinol. 207, 213–223 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Azziz, R. Introduction: determinants of polycystic ovary syndrome. Fertil. Steril. 106, 4–5 (2016).

    Article  PubMed  Google Scholar 

  56. Lizneva, D. et al. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: systematic review and meta-analysis. Fertil. Steril. 106, 1510–1520.e2 (2016).

    Article  PubMed  Google Scholar 

  57. Ezeh, U., Yildiz, B. O. & Azziz, R. Referral bias in defining the phenotype and prevalence of obesity in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98, E1088–E1096 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Dumesic, D. A. et al. Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight polycystic ovary syndrome women. J. Clin. Endocrinol. Metab. 101, 4178–4188 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. McGee, E. A. & Hsueh, A. J. Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21, 200–214 (2000).

    PubMed  CAS  Google Scholar 

  60. Sokka, T. & Huhtaniemi, I. Ontogeny of gonadotrophin receptors and gonadotrophin-stimulated cyclic AMP production in the neonatal rat ovary. J. Endocrinol. 127, 297–303 (1990).

    Article  PubMed  CAS  Google Scholar 

  61. Granfors, M. et al. Thyroid testing and management of hypothyroidism during pregnancy: a population-based study. J. Clin. Endocrinol. Metab. 98, 2687–2692 (2013).

    Article  PubMed  CAS  Google Scholar 

  62. Spergel, D. J., Krüth, U., Hanley, D. F., Sprengel, R. & Seeburg, P. H. GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurosci. 19, 2037–2050 (1999).

    Article  PubMed  CAS  Google Scholar 

  63. Caldwell, A. S. L. et al. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proc. Natl. Acad. Sci. USA 114, E3334–E3343 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hrabovszky, E. et al. Sexual dimorphism of kisspeptin and neurokinin B immunoreactive neurons in the infundibular nucleus of aged men and women. Front. Endocrinol. (Lausanne) 2, 80 (2011).

    Google Scholar 

  65. Casoni, F. et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 143, 3969–3981 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. Clarkson, J. et al. Sexual differentiation of the brain requires perinatal kisspeptin-GnRH neuron signaling. J. Neurosci. 34, 15297–15305 (2014).

    Article  PubMed  CAS  Google Scholar 

  67. Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Xu, C. et al. KLB, encoding β-Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Mol. Med. 9, 1379–1397 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Wang, H., Chung-Davidson, Y. W. & Li, W. Identification and quantification of sea lamprey gonadotropin-releasing hormones by electrospray ionization tandem mass spectrometry. J. Chromatogr. A 1345, 98–106 (2014).

    Article  PubMed  CAS  Google Scholar 

  70. Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    Article  PubMed  CAS  Google Scholar 

  71. Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173.e12 (2017).

    Article  PubMed  CAS  Google Scholar 

  72. Belle, M. et al. A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep. 9, 1191–1201 (2014).

    Article  PubMed  CAS  Google Scholar 

  73. Steyn, F. J. et al. Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 154, 4939–4945 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Vidal, A., Zhang, Q., Médigue, C., Fabre, S. & Clément, F. DynPeak: an algorithm for pulse detection and frequency analysis in hormonal time series. PLoS One 7, e39001 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Tardivel (microscopy core facility), M.-H. Gevaert (histology core facility), D. Taillieu and J. Devassine (animal core facility), and the BICeL core facility of the Lille University School of Medicine for expert technical assistance. We are deeply indebted to P. Ciofi (U1215, Neurocentre Magendie, Institut National de la Santé et de la Recherche Médicale, Bordeaux, France) for his helpful feedback and discussion of the data. This work was supported by: the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-2016-CoG to P.G. grant agreement n° 725149/REPRODAMH); the Institut National de la Santé et de la Recherche Médicale (INSERM), France (grant number U1172); the Centre Hospitalier Régional Universitaire, CHU de Lille, France (Bonus H to P.G. and Ph.D. fellowship to N.E.H.M.); Agence Nationale de la Recherche (ANR), France (ANR-14-CE12-0015-01 RoSes and GnRH to P.G.); Bourse France L’Oréal-UNESCO Pour les Femmes et la Science to B.K.T; Horizon 2020 Marie Sklodowska-Curie actions – European Research Fellowship (H2020-MSCA-IF-2014) to J.C.

Author information

Authors and Affiliations

Authors

Contributions

P.G. designed the study, analyzed data, prepared the figures, and wrote the manuscript. J.C. performed electrophysiological recordings and was involved in all aspects of study design, interpretation of results, and manuscript preparation; B.T., N.E.H.M., and A.-L.B. designed and performed the experiments and analyzed the data; A.L., assisted with experiments; P.P. performed the AMH measurements in blood human samples; S.A.M. performed tissue-clearing experiments; D.D., S.C.-J., and T.T.P. helped with several aspects of interpretation of clinical and preclinical results and manuscript preparation; I.S.-P. provided biological samples and clinical information for the human study; C.M and F.D.B. performed nano-HPLC-HRMS experiments; and V.P. was involved in the study design, interpretation of the results, and preparation of the manuscript.

Corresponding author

Correspondence to Paolo Giacobini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table and Figures

Supplementary Table 1 and Supplementary Figures 1–8

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tata, B., Mimouni, N., Barbotin, AL. et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med 24, 834–846 (2018). https://doi.org/10.1038/s41591-018-0035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0035-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing