Resource | Published:

The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia

Nature Medicinevolume 24pages868880 (2018) | Download Citation

Abstract

Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.

  • Subscribe to Nature Medicine for full access:

    $225

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome—Biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

  2. 2.

    Rivera, C. M. & Ren, B. Mapping human epigenomes. Cell 155, 39–55 (2013).

  3. 3.

    Akhtar-Zaidi, B. et al. Epigenomic enhancer profiling defines a signature of colon cancer. Science 336, 736–739 (2012).

  4. 4.

    Fiziev, P. et al. Systematic epigenomic analysis reveals chromatin states associated with melanoma progression. Cell Rep. 19, 875–889 (2017).

  5. 5.

    Lin, C. Y. et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62 (2016).

  6. 6.

    Muratani, M. et al. Nanoscale chromatin profiling of gastric adenocarcinoma reveals cancer-associated cryptic promoters and somatically acquired regulatory elements. Nat. Commun. 5, 4361 (2014).

  7. 7.

    Queiros, A. C. et al. Decoding the DNA methylome of mantle cell lymphoma in the light of the entire B cell lineage. Cancer Cell 30, 806–821 (2016).

  8. 8.

    Rendeiro, A. F. et al. Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks. Nat. Commun. 7, 11938 (2016).

  9. 9.

    Chun, H. J. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).

  10. 10.

    Khurana, E. et al. Role of non-coding sequence variants in cancer. Nat. Rev. Genet. 17, 93–108 (2016).

  11. 11.

    Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).

  12. 12.

    Fabbri, G. & Dalla-Favera, R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat. Rev. Cancer 16, 145–162 (2016).

  13. 13.

    Kipps, T. J. et al. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primers 3, 16096 (2017).

  14. 14.

    Damle, R. N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840–1847 (1999).

  15. 15.

    Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. & Stevenson, F. K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).

  16. 16.

    Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

  17. 17.

    Landau, D. A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).

  18. 18.

    Landau, D. A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 526, 525–530 (2015).

  19. 19.

    Oakes, C. C. et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 48, 253–264 (2016).

  20. 20.

    Puente, X. S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524 (2015).

  21. 21.

    Cahill, N. et al. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 27, 150–158 (2013).

  22. 22.

    Ferreira, P. G. et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 24, 212–226 (2014).

  23. 23.

    International Cancer Genome, C. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

  24. 24.

    Kulis, M. et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet. 47, 746–756 (2015).

  25. 25.

    Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

  26. 26.

    Ernst, J. & Kellis, M. ChromHMM: Automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

  27. 27.

    Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

  28. 28.

    Seifert, M. et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J. Exp. Med. 209, 2183–2198 (2012).

  29. 29.

    Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).

  30. 30.

    Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

  31. 31.

    Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016).

  32. 32.

    McCarthy, B. A. et al. A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. Immunol. Res. 63, 90–100 (2015).

  33. 33.

    Navarro, A., et al. Improved classification of leukemic B-cell lymphoproliferative disorders using a transcriptional and genetic classifier. Haematologica (2017).

  34. 34.

    Gutierrez, A. Jr. et al. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 116, 2975–2983 (2010).

  35. 35.

    Ceribelli, M. et al. A druggable TCF4- and BRD4-dependent transcriptional network sustains malignancy in blastic plasmacytoid dendritic cell neoplasm. Cancer Cell 30, 764–778 (2016).

  36. 36.

    Queiros, A. C. et al. A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 29, 598–605 (2015).

  37. 37.

    Khandanpour, C. et al. Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 23, 200–214 (2013).

  38. 38.

    Moroy, T. & Khandanpour, C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin. Immunol. 23, 368–378 (2011).

  39. 39.

    Murphy, E. J. et al. Leukemia-cell proliferation and disease progression in patients with early stage chronic lymphocytic leukemia. Leukemia 31, 1348–1354 (2017).

  40. 40.

    Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

  41. 41.

    Nihira, K. et al. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Cell Death Differ. 17, 689–698 (2010).

  42. 42.

    Kasof, G. M. et al. Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene 20, 7965–7975 (2001).

  43. 43.

    Xia, X. Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–143 (2000).

  44. 44.

    Minici, C. et al. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nat. Commun. 8, 15746 (2017).

  45. 45.

    Schuster-Bockler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012).

  46. 46.

    Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  47. 47.

    Pedersen, B. S. & Quinlan, A. R. Who’s who? Detecting and resolving sample anomalies in human DNA sequencing studies with peddy. Am. J. Hum. Genet. 100, 406–413 (2017).

  48. 48.

    Wolf, C. et al. NFATC1 activation by DNA hypomethylation in chronic lymphocytic leukemia correlates with clinical staging and can be inhibited by ibrutinib. Int. J. Cancer 142, 322–333 (2018).

  49. 49.

    Wu, W. et al. High LEF1 expression predicts adverse prognosis in chronic lymphocytic leukemia and may be targeted by ethacrynic acid. Oncotarget 7, 21631–21643 (2016).

  50. 50.

    Jones, P. A., Issa, J. P. & Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630–641 (2016).

  51. 51.

    Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

  52. 52.

    Riches, J. C. et al. Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of integrin signaling that is modulated by NOTCH1 mutations. Blood 123, 4101–4110 (2014).

  53. 53.

    Martinez-Trillos, A. et al. Clinical impact of MYD88 mutations in chronic lymphocytic leukemia. Blood 127, 1611–1613 (2016).

  54. 54.

    Burns, A., et al. Whole-genome sequencing of chronic lymphocytic leukaemia reveals distinct differences in the mutational landscape between IgHVmut and IgHVunmut subgroups. Leukemia (2017).

  55. 55.

    Qian, J. et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537 (2014).

  56. 56.

    Ecker, S. et al. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biol. 18, 18 (2017).

  57. 57.

    van de Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).

  58. 58.

    Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA interactions. Nat. Methods 4, 895–901 (2007).

  59. 59.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  60. 60.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  61. 61.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  62. 62.

    Leek, J.T. svaseq: Removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).

  63. 63.

    Cairns, J. et al. CHiCAGO: Robust detection of DNA looping interactions in Capture Hi-C data. Genome Biol. 17, 127 (2016).

  64. 64.

    Serra, F., Baù, D., Filion, G. & Marti-Renom, M.A. Structural features of the fly chromatin colors revealed by automatic three-dimensional modeling. bioRxiv, https://doi.org/10.1101/036764 (2016).

  65. 65.

    Ay, F. et al. Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC Genomics 16, 121 (2015).

  66. 66.

    Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

  67. 67.

    Thongjuea, S., Stadhouders, R., Grosveld, F. G. & Soler, E. & Lenhard, B. r3Cseq: An R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res. 41, e132 (2013).

  68. 68.

    Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).

  69. 69.

    Merkel, A., et al. GEMBS—High through-put processing for DNA methylation data from whole genome bisulfite sequencing (WGBS). bioRxiv (2017).

  70. 70.

    Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv https://arxiv.org/abs/1207.3907 (2012).

  71. 71.

    Juhling, F. et al. metilene: Fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 26, 256–262 (2016).

  72. 72.

    de Wit, E. et al. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501, 227–231 (2013).

  73. 73.

    Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).

  74. 74.

    McLeay, R. C. & Bailey, T. L. Motif Enrichment Analysis: A unified framework and an evaluation on ChIP data. BMC Bioinformatics 11, 165 (2010).

  75. 75.

    Mathelier, A. et al. JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110–115 (2016).

Download references

Acknowledgements

This work was funded by the European Union’s Seventh Framework Programme through the Blueprint Consortium (grant agreement 282510), the International Cancer Genome Consortium (Chronic Lymphocytic Leukemia Genome consortium to E.C. and C.L.-O.), the European Hematology Association (Non-Clinical Advanced Research Fellowship to J.I.M.-S.), the World Wide Cancer Research Foundation Grant No. 16-1285 (to J.I.M.-S.), the Spanish Ministerio de Economía y Competitividad (MINECO) Grant No. SAF2015-64885-R (to E.C.) and Grant No. PMP15/00007, part of Plan Nacional de I+D+I and co-financed by the ISCIII-Sub-Directorate General for Evaluation and the European Regional Development Fund (FEDER–“Una manera de hacer Europa”) (to E.C.), the Generalitat de Catalunya Suport Grups de Recerca AGAUR 2014-SGR-795 (to E.C.), the CERCA Programme/Generalitat de Catalunya and CIBERONC. R.B. was supported by fellowships from the EU (Marie Skłodowska-Curie Inter European Fellowship) and the Lady TATA Memorial Trust (International Award), N.R. by the Acció instrumental d’incorporació de científics i tecnòlegs PERIS 2016 from the Generalitat de Catalunya and M.Ku. by an AOI grant of the Spanish Association Against Cancer. E.C. is an Academia Researcher of the “Institució Catalana de Recerca i Estudis Avançats” (ICREA) of the Generalitat de Catalunya. This work was partially developed at the Centro Esther Koplowitz (CEK, Barcelona, Spain). We are indebted to the HCB-IDIBAPS Biobank-Tumor Bank and Hematopathology Collection for sample procurement.

Author information

Affiliations

  1. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

    • Renée Beekman
    • , Núria Russiñol
    • , Guillem Clot
    • , Ana C. Queirós
    • , Anna Enjuanes
    • , David Martín-García
    • , Sílvia Beà
    • , Magda Pinyol
    • , Elias Campo
    •  & Jose I. Martin-Subero
  2. Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain

    • Renée Beekman
    • , Guillem Clot
    • , Anna Enjuanes
    • , David Martín-García
    • , Sílvia Beà
    • , Magda Pinyol
    • , Marta Aymerich
    • , Xabier Agirre
    • , Felipe Prosper
    • , Tycho Baumann
    • , Julio Delgado
    • , Armando López-Guillermo
    • , Xose S. Puente
    • , Carlos López-Otín
    • , Elias Campo
    •  & Jose I. Martin-Subero
  3. Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain

    • Vicente Chapaprieta
    • , Roser Vilarrasa-Blasi
    • , Núria Verdaguer-Dot
    • , Martí Duran-Ferrer
    • , Elias Campo
    •  & Jose I. Martin-Subero
  4. Molecular Biology, NCMLS, FNWI, Radboud University, Nijmegen, The Netherlands

    • Joost H. A. Martens
    •  & Hendrik G. Stunnenberg
  5. Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain

    • Marta Kulis
    •  & Elias Campo
  6. Universitat Pompeu Fabra (UPF), Barcelona, Spain

    • François Serra
    • , Julie Blanc
    • , Marta Gut
    • , Angelika Merkel
    • , Simon Heath
    • , Marc A. Martí-Renom
    •  & Ivo Gut
  7. Structural Genomics Group, CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

    • François Serra
    •  & Marc A. Martí-Renom
  8. Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

    • François Serra
    •  & Marc A. Martí-Renom
  9. Nuclear Dynamics Program, Babraham Institute, Babraham Research Campus, Cambridge, UK

    • Biola M. Javierre
    • , Steven W. Wingett
    •  & Peter Fraser
  10. Core Biología Molecular, CDB, Hospital Clínic, Barcelona, Spain

    • Giancarlo Castellano
  11. CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

    • Julie Blanc
    • , Marta Gut
    • , Angelika Merkel
    • , Simon Heath
    •  & Ivo Gut
  12. Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain

    • Anna Vlasova
    • , Sebastian Ullrich
    • , Emilio Palumbo
    •  & Roderic Guigó
  13. Unitat de Hematología, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain

    • Marta Aymerich
  14. Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain

    • Romina Royo
    • , Montserrat Puiggros
    •  & David Torrents
  15. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

    • David Torrents
    •  & Marc A. Martí-Renom
  16. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK

    • Avik Datta
    • , Ernesto Lowy
    • , Myrto Kostadima
    • , Maša Roller
    • , Laura Clarke
    •  & Paul Flicek
  17. Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain

    • Xabier Agirre
    •  & Felipe Prosper
  18. Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain

    • Felipe Prosper
  19. Servicio de Hematología, Hospital Clínic, IDIBAPS, Barcelona, Spain

    • Tycho Baumann
    • , Julio Delgado
    •  & Armando López-Guillermo
  20. Department of Biological Science, Florida State University, Tallahassee, FL, USA

    • Peter Fraser
  21. Max Planck Institut for Molecular Genetics, Berlin, Germany

    • Marie-Laure Yaspo
  22. Institute of Human Genetics, University of Ulm and University Hospital of Ulm, Ulm, Germany

    • Reiner Siebert
  23. Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain

    • Xose S. Puente
    •  & Carlos López-Otín
  24. Hematopathology Section, Hospital Clinic of Barcelona, Barcelona, Spain

    • Elias Campo

Authors

  1. Search for Renée Beekman in:

  2. Search for Vicente Chapaprieta in:

  3. Search for Núria Russiñol in:

  4. Search for Roser Vilarrasa-Blasi in:

  5. Search for Núria Verdaguer-Dot in:

  6. Search for Joost H. A. Martens in:

  7. Search for Martí Duran-Ferrer in:

  8. Search for Marta Kulis in:

  9. Search for François Serra in:

  10. Search for Biola M. Javierre in:

  11. Search for Steven W. Wingett in:

  12. Search for Guillem Clot in:

  13. Search for Ana C. Queirós in:

  14. Search for Giancarlo Castellano in:

  15. Search for Julie Blanc in:

  16. Search for Marta Gut in:

  17. Search for Angelika Merkel in:

  18. Search for Simon Heath in:

  19. Search for Anna Vlasova in:

  20. Search for Sebastian Ullrich in:

  21. Search for Emilio Palumbo in:

  22. Search for Anna Enjuanes in:

  23. Search for David Martín-García in:

  24. Search for Sílvia Beà in:

  25. Search for Magda Pinyol in:

  26. Search for Marta Aymerich in:

  27. Search for Romina Royo in:

  28. Search for Montserrat Puiggros in:

  29. Search for David Torrents in:

  30. Search for Avik Datta in:

  31. Search for Ernesto Lowy in:

  32. Search for Myrto Kostadima in:

  33. Search for Maša Roller in:

  34. Search for Laura Clarke in:

  35. Search for Paul Flicek in:

  36. Search for Xabier Agirre in:

  37. Search for Felipe Prosper in:

  38. Search for Tycho Baumann in:

  39. Search for Julio Delgado in:

  40. Search for Armando López-Guillermo in:

  41. Search for Peter Fraser in:

  42. Search for Marie-Laure Yaspo in:

  43. Search for Roderic Guigó in:

  44. Search for Reiner Siebert in:

  45. Search for Marc A. Martí-Renom in:

  46. Search for Xose S. Puente in:

  47. Search for Carlos López-Otín in:

  48. Search for Ivo Gut in:

  49. Search for Hendrik G. Stunnenberg in:

  50. Search for Elias Campo in:

  51. Search for Jose I. Martin-Subero in:

Contributions

The Chronic Lymphocytic Leukemia Genome consortium and the BLUEPRINT consortium contributed to this study respectively as part of the International Cancer Genome Consortium and the International Human Epigenome Consortium. Investigator contributions were as follows: T.B., J.D., A.L.-G., D.M.-G., S.B., M.P., M.A., M.Ku., N.V.-D., X.A. and F.P. contributed to sample collection (CLL and normal B cells) as well as to their biological and clinical annotation. M.P., N.V.-D., M.G. and I.G. contributed to WGS data generation. N.R., N.V.-D., J.H.A.M., H.G.S., J.I.M.-S., M.G., I.G. and M.-L.Y. contributed to histone mark, ATAC-seq, methylome and transcriptome data generation. R.V.-B., J.B., M.G., I.G., J.I.M.-S., B.M.J., P.Fr., N.V.-D., A.E., A.C.Q. and R.B. contributed to in situ HiC, promoter capture HiC and 4C-seq data generation. X.S.P. and C.L.-O. contributed to WGS data analysis. R.B., V.C., J.H.A.M., M.D.-F., M.Ku., G.Cl., G.Ca., A.M., S.H., A.V., S.U., E.P., R.G., R.R., M.P., D.T., A.D., E.L., M.Ko., M.R., L.C., P.Fl. and J.I.M.-S. contributed to histone mark, ATAC-seq, methylome and transcriptome data analysis. R.V.-B., F.S., M.A.M.-R., S.W.W., B.M.J., P.Fr. and R.B. contributed to in situ HiC, promoter capture HiC and 4C-seq data analysis. C.L.-O., E.C., H.G.S. and R.S. participated in the study design and data interpretation together with R.B. and J.I.M.-S. R.B. and J.I.M.-S. directed the research and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jose I. Martin-Subero.

Supplementary information

  1. Supplementary Figures

    Supplementary Figures 1-19

  2. Reporting Summary

  3. Supplementary Table 1

    Patient characteristics

  4. Supplementary Table 2

    K-means clusters

  5. Supplementary Table 3

    Differential DNA methylation in CLL

  6. Supplementary Table 4

    Genes related to K-means clusters histone marks

  7. Supplementary Table 5

    Gene ontology terms

  8. Supplementary Table 6

    Chromatin states related to K-means clusters histone marks

  9. Supplementary Table 7

    De novo active and inactive regulatory elements in CLL

  10. Supplementary Table 8

    Enriched transcription factor motifs

  11. Supplementary Table 9

    Differentially active/accessible regions U-CLL and M-CLL

  12. Supplementary Table 10

    Overlap cell of origin signature DNA methylation and ATACseq

  13. Supplementary Table 11

    Patient groups somatic mutations and structural variants

  14. Supplementary Table 12

    Differential regions and target genes related to somatic genetic

  15. Supplementary Table 13

    Regions considered IG or SHM target loci in this study

  16. Supplementary Table 14

    Data quality measures

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41591-018-0028-4

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.