Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase

Abstract

The ubiquitously expressed non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, is involved in signal transduction downstream of multiple growth factor, cytokine and integrin receptors1. Its requirement for complete RAS–MAPK activation and its role as a negative regulator of JAK–STAT signaling have established SHP2 as an essential player in oncogenic signaling pathways1,2,3,4,5,6,7. Recently, a novel potent allosteric SHP2 inhibitor was presented as a viable therapeutic option for receptor tyrosine kinase-driven cancers, but was shown to be ineffective in KRAS-mutant tumor cell lines in vitro8. Here, we report a central and indispensable role for SHP2 in oncogenic KRAS-driven tumors. Genetic deletion of Ptpn11 profoundly inhibited tumor development in mutant KRAS-driven murine models of pancreatic ductal adenocarcinoma and non-small-cell lung cancer. We provide evidence for a critical dependence of mutant KRAS on SHP2 during carcinogenesis. Deletion or inhibition of SHP2 in established tumors delayed tumor progression but was not sufficient to achieve tumor regression. However, SHP2 was necessary for resistance mechanisms upon blockade of MEK. Synergy was observed when both SHP2 and MEK were targeted, resulting in sustained tumor growth control in murine and human patient-derived organoids and xenograft models of pancreatic ductal adenocarcinoma and non-small-cell lung cancer. Our data indicate the clinical utility of dual SHP2/MEK inhibition as a targeted therapy approach for KRAS-mutant cancers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Loss of Ptpn11 profoundly inhibits KRASG12D-driven pancreatic and pulmonary carcinogenesis.
Fig. 2: Oncogenic KRAS depends on SHP2 for adequate activity during carcinogenesis.
Fig. 3: Loss of SHP2 in established PDAC decelerates tumor progression and sensitizes to MEK inhibition.
Fig. 4: Dual MEK and SHP2 inhibition as a viable strategy to treat KRAS-mutant tumors.

References

  1. 1.

    Neel, B. G., Gu, H. & Pao, L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Xu, D. & Qu, C.-K. Protein tyrosine phosphatases in the JAK/STAT pathway. Front. Biosci. 13, 4925–4932 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Chan, G., Kalaitzidis, D. & Neel, B. G. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 27, 179–192 (2008).

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Matozaki, T., Murata, Y., Saito, Y., Okazawa, H. & Ohnishi, H. Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Sci. 100, 1786–1793 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Chan, R. J. & Feng, G.-S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 109, 862–867 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Bard-Chapeau, E. A. et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 19, 629–639 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Grossmann, K. S., Rosário, M., Birchmeier, C. & Birchmeier, W. The tyrosine phosphatase Shp2 in development and cancer. Adv. Cancer Res. 106, 53–89 (2010).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Chen, Y.-N. P. et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148–152 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53, 549–554 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Zheng, J. et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat. Genet. 48, 747–757 (2016).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Schneeberger, V. E. et al. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma. Oncotarget 6, 6191–6202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Xu, J., Zeng, L.-F., Shen, W., Turchi, J. J. & Zhang, Z.-Y. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma. Biochem. Biophys. Res. Commun. 439, 586–590 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Vogel, W., Lammers, R., Huang, J. & Ullrich, A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259, 1611–1614 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Feng, G. S., Hui, C. C. & Pawson, T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 259, 1607–1611 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Lu, W., Shen, K. & Cole, P. A. Chemical dissection of the effects of tyrosine phosphorylation of SHP-2. Biochemistry 42, 5461–5468 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Means, A. L. et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 132, 3767–3776 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Bardeesy, N. et al. Both p16Ink4a and the p19Arf–p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl Acad. Sci. USA 103, 5947–5952 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Collisson, E. A. et al. A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov. 2, 685–693 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Blasco, R. B. et al. c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell 19, 652–663 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    di Magliano, M. P. & Logsdon, C. D. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology 144, 1220–1229 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Eser, S. et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23, 406–420 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Schönhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med. 20, 1340–1347 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Sun, C. et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 7, 86–93 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Pettazzoni, P. et al. Genetic events that limit the efficacy of MEK and RTK inhibitor therapies in a mouse model of KRAS-driven pancreatic cancer. Cancer Res. 75, 1091–1101 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Prahallad, A. et al. PTPN11 is a central node in intrinsic and acquired resistance to targeted cancer drugs. Cell Rep. 12, 1978–1985 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Manchado, E. et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Infante, J. R. et al. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur. J. Cancer 50, 2072–2081 (2014).

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Jänne, P. A. et al. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: the SELECT-1 randomized clinical trial. JAMA 317, 1844–1853 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Grosskopf, S. et al. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo. ChemMedChem 10, 815–826 (2015).

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Garcia Fortanet, J. et al. Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor. J. Med. Chem. 59, 7773–7782 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Alagesan, B. et al. Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer. Clin. Cancer Res. 21, 396–404 (2015).

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Caunt, C. J., Sale, M. J., Smith, P. D. & Cook, S. J. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat. Rev. Cancer 15, 577–592 (2015).

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Mainardi, S. et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat. Med. https://doi.org/10.1038/s41591-018-0023-9 (2018).

  42. 42.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Nakhai, H. et al. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134, 1151–1160 (2007).

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Zhang, E. E., Chapeau, E., Hagihara, K. & Feng, G.-S. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc. Natl Acad. Sci. USA 101, 16064–16069 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Yasukawa, H. et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat. Immunol. 4, 551–556 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Lee, C.-L. et al. Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. Dis. Model. Mech. 5, 397–402 (2012).

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Mazur, P. K. et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat. Med. 21, 1163–1171 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Hellmuth, K. et al. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc. Natl Acad. Sci. USA 105, 7275–7280 (2008).

    Article  PubMed  Google Scholar 

  51. 51.

    Lan, L. et al. Shp2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice. EMBO J. 34, 1493–1508 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Chou, T.-C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70, 440–446 (2010).

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.-S. Feng (Department of Pathology, School of Medicine, and Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA) for sharing the Ptpn11fl allele. We also thank R. F. Braren and D. C. Karampinos (both Institute of Radiology, Klinikum rechts der Isar, Technische Universität München) for providing the infrastructure and A. Gupta for help with the setup for MRI studies. This work was supported by grants from Deutsche Forschungsgemeinschaft (DFG AL1174/5-1 to H.A. and LE3222/1-1 to M.L.), Deutsche Krebshilfe (no. 111646 and no. 111464 to H.A.; Max Eder Program no. 111273 to M.R.), the Wilhelm Sander Stiftung (2014.052.1 to H.A.) and the Fundación Asociación Española Contra el Cáncer (to B.S.).

Author information

Affiliations

Authors

Contributions

D.A.R., H.A. and G.J.H. conceived the study. D.A.R. conducted the animal experiments. D.A.R., A.B., D.K. and M.L. performed the histological scoring, immunohistochemistry and immunofluorescence. D.A.R., G.J.H., K.J.C., J.A., A.B. and E.A.Z.v.d.L. performed the immunoblotting. In vitro experiments with human PDAC cell lines including CRISPR–Cas9 knockout and reconstitution experiments were conducted by G.J.H. and E.A.Z.v.d.L. In vitro drug screening was done by K.J.C. and D.A.R. The oncogenomic database analysis and GSEAs were performed by D.A.R. Maintenance of mouse colonies and genotyping were performed by D.A.R., K.J.C., J.A., D.K., K.G., K.N.D., S.M.W., M.L., A.F.K., A.B., M.K., E.K.-A. and L.S. M.P.L.-A., M.N. and W.B. synthesized GS493 and SHP099. K.J.C., Z.D., D.A.R. and M.R. performed the ex vivo organoid assay. D.S. generated mutant mouse alleles. M.E. and B.S. established the PDAC-PDX. D.A.R., G.J.H., K.J.C. and H.A. analyzed the data. D.A.R., G.J.H. and K.J.C. generated the figures. D.A.R. and H.A. wrote the original draft, with input from B.S. and G.J.H. Supervision was provided by H.A. Funding was provided by H.A., M.L., M.R., U.T.H., R.M.S., B.S. and W.B. All authors critically revised and approved the manuscript.

Corresponding author

Correspondence to Hana Algül.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruess, D.A., Heynen, G.J., Ciecielski, K.J. et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med 24, 954–960 (2018). https://doi.org/10.1038/s41591-018-0024-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing