Convergence of placenta biology and genetic risk for schizophrenia


Defining the environmental context in which genes enhance disease susceptibility can provide insight into the pathogenesis of complex disorders. We report that the intra-uterine environment modulates the association of schizophrenia with genomic risk (in this study, genome-wide association study–derived polygenic risk scores (PRSs)). In independent samples from the United States, Italy, and Germany, the liability of schizophrenia explained by PRS is more than five times greater in the presence of early-life complications (ELCs) compared with their absence. Patients with ELC histories have significantly higher PRS than patients without ELC histories, which is confirmed in additional samples from Germany and Japan. The gene set composed of schizophrenia loci that interact with ELCs is highly expressed in placenta, is differentially expressed in placentae from complicated in comparison with normal pregnancies, and is differentially upregulated in placentae from male compared with female offspring. Pathway analyses reveal that genes driving the PRS-ELC interaction are involved in cellular stress response; genes that do not drive such interaction implicate orthogonal biological processes (for example, synaptic function). We conclude that a subset of the most significant genetic variants associated with schizophrenia converge on a developmental trajectory sensitive to events that affect the placental response to stress, which may offer insights into sex biases and primary prevention.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: PRS1, ELC history, and schizophrenia in the scz_lie_eur sample (N = 501).
Fig. 2: Liability of schizophrenia explained by genomic risk in the context of ELC history, in the scz_lie_eur sample (N = 501).
Fig. 3: Placental and non-placental genomic risk for schizophrenia.
Fig. 4: Upregulation of schizophrenia risk genes in male compared with female placentae.


  1. 1.

    Saha, S., Chant, D., Welham, J. & McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2, e141 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    McGrath, J., Saha, S., Chant, D. & Welham, J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 30, 67–76 (2008).

    Article  PubMed  Google Scholar 

  3. 3.

    Sullivan, P. F. The genetics of schizophrenia. PLoS Med. 2, e212 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Lichtenstein, P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Patterson, P. H. Neuroscience. Maternal effects on schizophrenia risk. Science 318, 576–577 (2007).

    PubMed  CAS  Google Scholar 

  6. 6.

    Gottesman, I. I. & Wolfgram, D. L. Schizophrenia Genesis: The Origins of Madness (Freeman, 1991).

  7. 7.

    Mikaelsson, M. A., Constancia, M., Dent, C. L., Wilkinson, L. S. & Humby, T. Placental programming of anxiety in adulthood revealed by Igf2-null models. Nat. Commun. 4, 2311 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Bronson, S. L. & Bale, T. L. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology 155, 2635–2646 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Bronson, S. L. & Bale, T. L. The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology 41, 207–218 (2016).

    Article  PubMed  Google Scholar 

  10. 10.

    Bonnin, A. & Levitt, P. Placental source for 5-HT that tunes fetal brain development. Neuropsychopharmacology 37, 299–300 (2012).

    Article  PubMed  Google Scholar 

  11. 11.

    Weinberger, D. R. From neuropathology to neurodevelopment. Lancet 346, 552–557 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Brown, A. S. & Derkits, E. J. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am. J. Psychiatry 167, 261–280 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Cannon, M., Jones, P. B. & Murray, R. M. Obstetric complications and schizophrenia: historical and meta-analytic review. Am. J. Psychiatry 159, 1080–1092 (2002).

    Article  PubMed  Google Scholar 

  14. 14.

    Nicodemus, K. K. et al. Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol. Psychiatry 13, 873–877 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Schmidt-Kastner, R., van Os, J., Esquivel, G., Steinbusch, H. W. & Rutten, B. P. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Mol. Psychiatry 17, 1194–1205 (2012).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  17. 17.

    Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Ingason, A. et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol. Psychiatry 16, 17–25 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    International Schizophrenia Consortium et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    PubMed Central  Google Scholar 

  21. 21.

    Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 17, 1520–1528 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    McNeil, T. F. et al. Obstetric complications in histories of monozygotic twins discordant and concordant for schizophrenia. Acta Psychiatr. Scand. 89, 196–204 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    McNeil, T. F., Cantor-Graae, E. & Sjostrom, K. Obstetric complications as antecedents of schizophrenia: empirical effects of using different obstetric complication scales. J. Psychiatr. Res. 28, 519–530 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Ursini, G. et al. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J. Neurosci. 31, 6692–6698 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Verdoux, H., Sutter, A. L., Glatigny-Dallay, E. & Minisini, A. Obstetrical complications and the development of postpartum depressive symptoms: a prospective survey of the MATQUID cohort. Acta Psychiatr. Scand. 106, 212–219 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nat. Rev. Genet. 4, 587–597 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Won, H. et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Jaffe, A. E. et al. Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nat. Neurosci. 18, 154–161 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Jaffe, A. E. et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40–47 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Burton, G. J. & Jauniaux, E. The cytotrophoblastic shell and complications of pregnancy. Placenta 60, 134–139 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Cotechini, T. & Graham, C. H. Aberrant maternal inflammation as a cause of pregnancy complications: a potential therapeutic target?. Placenta 36, 960–966 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Maltepe, E. & Fisher, S. J. Placenta: the forgotten organ. Annu. Rev. Cell Dev. Biol. 31, 523–552 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Maltepe, E., Bakardjiev, A. I. & Fisher, S. J. The placenta: transcriptional, epigenetic, and physiological integration during development. J. Clin. Invest. 120, 1016–1025 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Leavey, K. et al. Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension 68, 137–147 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Redman, C. Pre-eclampsia: a complex and variable disease. Pregnancy Hypertens. 4, 241–242 (2014).

    Google Scholar 

  36. 36.

    Ferguson, K. K., Meeker, J. D., McElrath, T. F., Mukherjee, B. & Cantonwine, D. E. Repeated measures of inflammation and oxidative stress biomarkers in preeclamptic and normotensive pregnancies. Am. J. Obstet. Gynecol. 216, 527.e521–527.e529 (2017).

    Article  CAS  Google Scholar 

  37. 37.

    Redman, C. W., Sacks, G. P. & Sargent, I. L. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol. 180, 499–506 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Hwang, S. S. et al. Maternal substance use disorders and infant outcomes in the first year of life among Massachusetts singletons, 2003-2010. J. Pediatr. 191, 69–75 (2017).

    Article  PubMed  Google Scholar 

  39. 39.

    Mol, B. W. J. et al. Pre-eclampsia. Lancet 387, 999–1011 (2016).

    Article  PubMed  Google Scholar 

  40. 40.

    Lisonkova, S. & Joseph, K. S. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am. J. Obstet. Gynecol. 209, 544.e541–544.e512 (2013).

    Article  Google Scholar 

  41. 41.

    Wollmann, H. A. Intrauterine growth restriction: definition and etiology. Horm. Res. 49 (Suppl. 2), 1–6 (1998).

    Article  CAS  Google Scholar 

  42. 42.

    Dalman, C., Allebeck, P., Cullberg, J., Grunewald, C. & Koster, M. Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Arch. Gen. Psychiatry 56, 234–240 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Byrne, M., Agerbo, E., Bennedsen, B., Eaton, W. W. & Mortensen, P. B. Obstetric conditions and risk of first admission with schizophrenia: a Danish national register based study. Schizophr. Res. 97, 51–59 (2007).

    Article  PubMed  Google Scholar 

  44. 44.

    Xiao, X. et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943–5952 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Hashimoto-Torii, K. et al. Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron 82, 560–572 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    McGrath, J. et al. A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med. 2, 13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Aleman, A., Kahn, R. S. & Selten, J. P. Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch. Gen. Psychiatry 60, 565–571 (2003).

    Article  PubMed  Google Scholar 

  48. 48.

    Hjorthoj, C., Sturup, A. E., McGrath, J. J. & Nordentoft, M. Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis. Lancet Psychiatry 4, 295–301 (2017).

    Article  PubMed  Google Scholar 

  49. 49.

    Ochoa, S., Usall, J., Cobo, J., Labad, X. & Kulkarni, J. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr. Res. Treatment 2012, 916198 (2012).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Abel, K. M., Drake, R. & Goldstein, J. M. Sex differences in schizophrenia. Int. Rev. Psychiatry 22, 417–428 (2010).

    Article  PubMed  Google Scholar 

  51. 51.

    Angermeyer, M. C., Kuhn, L. & Goldstein, J. M. Gender and the course of schizophrenia: differences in treated outcomes. Schizophr. Bull. 16, 293–307 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Bloom, B., Cohen, R. A. & Freeman, G. Summary health statistics for U.S. children: National Health Interview Survey, 2010. Vital Health Stat. 10, 1–80 (2011).

    Google Scholar 

  53. 53.

    Burton, G. J., Moffett, A. & Keverne, B. Human evolution: brain, birthweight and the immune system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140061 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Teffer, K. & Semendeferi, K. Human prefrontal cortex: evolution, development, and pathology. Prog. Brain Res. 195, 191–218 (2012).

    Article  PubMed  Google Scholar 

  55. 55.

    Rosenberg, K. R. & Trevathan, W. R. An anthropological perspective on the evolutionary context of preeclampsia in humans. J. Reprod. Immunol. 76, 91–97 (2007).

    Article  PubMed  Google Scholar 

  56. 56.

    Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Niemela, S., et al. Prenatal nicotine exposure and risk of schizophrenia among offspring in a national birth cohort. Am. J. Psychiatry 73, 799–806 (2016).

  58. 58.

    Glasson, E. J. et al. Perinatal factors and the development of autism: a population study. Arch. Gen. Psychiatry 61, 618–627 (2004).

    Article  PubMed  Google Scholar 

  59. 59.

    Stoner, R. et al. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med. 370, 1209–1219 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. 60.

    Ross, R. G. et al. Perinatal phosphatidylcholine supplementation and early childhood behavior problems: evidence for CHRNA7 moderation. Am. J. Psychiatry 173, 509–516 (2016).

    Article  PubMed  Google Scholar 

  61. 61.

    Rasetti, R. et al. Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch. Gen. Psychiatry 68, 1207–1217 (2011).

    Article  PubMed  Google Scholar 

  62. 62.

    Ursini, G. et al. BDNF rs6265 methylation and genotype interact on risk for schizophrenia. Epigenetics 11, 1–13 (2016).

    Article  Google Scholar 

  63. 63.

    Begemann, M. et al. Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch. Gen. Psychiatry 67, 879–888 (2010).

    Article  PubMed  CAS  Google Scholar 

  64. 64.

    Ribbe, K. et al. The cross-sectional GRAS sample: a comprehensive phenotypical data collection of schizophrenic patients. BMC Psychiatry 10, 91 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ohi, K. et al. Glutamate networks implicate cognitive impairments in schizophrenia: genome-wide association studies of 52 cognitive phenotypes. Schizophr. Bull. 41, 909–918 (2015).

    Article  PubMed  Google Scholar 

  66. 66.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Human Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  67. 67.

    Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 1, 457–470 (2011).

    Article  Google Scholar 

  68. 68.

    Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).

    Article  CAS  Google Scholar 

  69. 69.

    Stepniak, B. et al. Accumulated environmental risk determining age at schizophrenia onset: a deep phenotyping-based study. Lancet Psychiatry 1, 444–453 (2014).

    Article  PubMed  Google Scholar 

  70. 70.

    Danilack, V. A., Nunes, A. P. & Phipps, M. G. Unexpected complications of low-risk pregnancies in the United States. Am. J. Obstet. Gynecol. 212, 809.e1–809.e6 (2015).

    Article  Google Scholar 

  71. 71.

    Hewson, D. & Bennett, A. Childbirth research data: medical records or women’s reports? Am. J. Epidemiol. 125, 484–491 (1987).

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    O’Callaghan, E., Larkin, C. & Waddington, J. L. Obstetric complications in schizophrenia and the validity of maternal recall. Psychol. Med. 20, 89–94 (1990).

    Article  PubMed  Google Scholar 

  73. 73.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008).

  74. 74.

    Keller, M. C. Gene x environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol. Psychiatry 75, 18–24 (2014).

    Article  PubMed  Google Scholar 

  75. 75.

    Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  PubMed  CAS  Google Scholar 

  76. 76.

    Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  77. 77.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. 78.

    Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. 79.

    Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references


We are grateful to the Lieber and Maltz families for their visionary support that funded the analytic work of this project. We thank all of the participants in the study and their families. We thank Joo Heon Shin for help with the gene expression analyses, and Barbara Gelao, Marina Mancini, Raffaella Romano, Rita Masellis, and Grazia Caforio for help with data acquisition. We also thank Sally Cheung and John Meyer for data management, and Susan Fisher for guidance with placental datasets and review of the manuscript. We thank the Psychiatry Genomics Consortium for providing the statistics for PRS calculation, and Thomas F. McNeil for providing the scale for ELC scoring. We also thank all of the authors of the publicly available placental datasets that have been used in this study. The collection of the ELC and genetic data for the American samples was supported by direct funding from the Intramural Research Program of the NIMH to the Clinical Brain Disorders Branch (D.R.W., PI, protocol 95-M-0150, NCT00001486, annual report number: ZIA MH002942-05), with supplemental analytic support from the Clinical and Translational Neuroscience Branch (K.F.B., PI). G.U. received partial support from P50MH094268. The collection of ELCs and genetic data for the Italian sample has been supported by the NARSAD grant no. 20337 and the “Ricerca Finalizzata” grant no. PE-2011-02347951 (both awarded to A.B.). The GRAS data collection has been supported by funding from the Max Planck Society, the Max Planck Förderstiftung, the DFG (CNMPB), EXTRABRAIN EU-FP7, and the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) (to H.E.).

Author information




G.U., G.P., and D.R.W. designed the study and interpreted the results. G.U., G.P., J.F.R., E.G.H., A.E.J., and C.C. carried out statistical analyses. G.U., Q.C., M.M., R.E.S., H.E., and D.R.W. organized and performed genotyping, imputation, and risk profile scoring. G.U., S.M., M.B., J.S., K.F.B., M.F.E., R.E.S., G.B., R.H., D.R., H.E., A.B., and D.R.W. organized and carried out subject recruitment and biological material collection in the discovery sample and in the replication samples, whereas G.U., G.P., S.M., A.P., G.M., M.B., H.Y., R.H., D.R., and H.E. carried out ELC assessment. J.F.R. and E.G.H. contributed to the collection of the placental tissue used in the RNA-sequencing analysis and, together with G.U., G.P., C.C., and D.R.W., interpreted the results of the gene set enrichment analyses in placental samples from complicated pregnancies compared with controls. G.U., G.P., and D.R.W. drafted the manuscript, and all authors contributed to the final version of the paper.

Corresponding author

Correspondence to Daniel R. Weinberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–21, Supplementary Tables 2–8, 10–14, and 19–21 and Supplementary Notes

Reporting Summary

Supplementary Table 1

Polygenic risk profile score SNPs

Supplementary Table 9

PRS1 and PRS2 genes and their enrichment in placental datasets

Supplementary Table 15

Pathway enrichment results

Supplementary Table 16

Function enrichment results

Supplementary Table 17

Gene Ontology enrichment results

Supplementary Table 18

Upstream regulators enrichment results

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ursini, G., Punzi, G., Chen, Q. et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat Med 24, 792–801 (2018).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing