Lung cancer is a devastating disease that remains a top cause of cancer mortality. Despite improvements with targeted and immunotherapies, the majority of patients with lung cancer lack effective therapies, underscoring the need for additional treatment approaches. Genomic studies have identified frequent alterations in components of the SWI/SNF chromatin remodeling complex including SMARCA4 and ARID1A. To understand the mechanisms of tumorigenesis driven by mutations in this complex, we developed a genetically engineered mouse model of lung adenocarcinoma by ablating Smarca4 in the lung epithelium. We demonstrate that Smarca4 acts as a bona fide tumor suppressor and cooperates with p53 loss and Kras activation. Gene expression analyses revealed the signature of enhanced oxidative phosphorylation (OXPHOS) in SMARCA4 mutant tumors. We further show that SMARCA4 mutant cells have enhanced oxygen consumption and increased respiratory capacity. Importantly, SMARCA4 mutant lung cancer cell lines and xenograft tumors have marked sensitivity to inhibition of OXPHOS by a novel small molecule, IACS-010759, that is under clinical development. Mechanistically, we show that SMARCA4-deficient cells have a blunted transcriptional response to energy stress creating a therapeutically exploitable synthetic lethal interaction. These findings provide the mechanistic basis for further development of OXPHOS inhibitors as therapeutics against SWI/SNF mutant tumors.

  • Subscribe to Nature Medicine for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

  2. 2.

    Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

  3. 3.

    Wilson, B. G. & Roberts, C. W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492 (2011).

  4. 4.

    Wilson, B. G. et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

  5. 5.

    Stanton, B.Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2016).

  6. 6.

    Kadoch, C. et al. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

  7. 7.

    Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).

  8. 8.

    Mathur, R. et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet. 49, 296–302 (2017).

  9. 9.

    Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

  10. 10.

    Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).

  11. 11.

    Romero, O. A. et al. The tumour suppressor and chromatin-remodelling factor BRG1 antagonizes Myc activity and promotes cell differentiation in human cancer. EMBO Mol. Med. 4, 603–616 (2012).

  12. 12.

    Johnson, B. E. Divide and conquer to treat lung cancer. N. Engl. J. Med. 375, 1892–1893 (2016).

  13. 13.

    Medina, P. P. et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum. Mutat. 29, 617–622 (2008).

  14. 14.

    Medina, P. P. et al. Genetic and epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRG1, in lung tumors. Genes Chromosomes Cancer 41, 170–177 (2004).

  15. 15.

    Wong, A. K. et al. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 60, 6171–6177 (2000).

  16. 16.

    Errico, A. Genetics: SMARCA4 mutated in SCCOHT. Nat. Rev. Clin. Oncol. 11, 302 (2014).

  17. 17.

    DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

  18. 18.

    Kim, E. S. et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011).

  19. 19.

    LeBleu, V. S. et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–1003 (2014).

  20. 20.

    Handschin, C. & Spiegelman, B. M. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 27, 728–735 (2006).

  21. 21.

    Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. eLife 5, e10769 (2016).

  22. 22.

    Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

  23. 23.

    Cantor, J. R. & Sabatini, D. M. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2, 881–898 (2012).

  24. 24.

    Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

  25. 25.

    Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 39, 347–354 (2014).

  26. 26.

    Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, (2018).

  27. 27.

    Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

  28. 28.

    Nakazawa, M. S., Keith, B. & Simon, M. C. Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 16, 663–673 (2016).

  29. 29.

    Zhao, J., Du, F., Shen, G., Zheng, F. & Xu, B. The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis. 6, e1600 (2015).

  30. 30.

    Buttgereit, F. & Brand, M. D. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 312, 163–167 (1995).

  31. 31.

    Ha, J., Daniel, S., Broyles, S. S. & Kim, K. H. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J. Biol. Chem. 269, 22162–22168 (1994).

  32. 32.

    Rivkin, A. et al. 3-Aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase inhibitors. Bioorg. Med. Chem. Lett. 16, 4620–4623 (2006).

  33. 33.

    Jones, S. F. & Infante, J. R. Molecular pathways: fatty acid synthase. Clin. Cancer Res. 21, 5434–5438 (2015).

  34. 34.

    Rodriguez-Nieto, S. & Sanchez-Cespedes, M. BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer. Carcinogenesis 30, 547–554 (2009).

  35. 35.

    Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

  36. 36.

    Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

  37. 37.

    Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

  38. 38.

    Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

  39. 39.

    Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

  40. 40.

    Neigeborn, L. & Carlson, M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845–858 (1984).

  41. 41.

    Carlson, M., Osmond, B. C. & Botstein, D. Mutants of yeast defective in sucrose utilization. Genetics 98, 25–40 (1981).

  42. 42.

    Salma, N., Xiao, H., Mueller, E. & Imbalzano, A. N. Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the peroxisome proliferator-activated receptor gamma nuclear hormone receptor. Mol. Cell Biol. 24, 4651–4663 (2004).

  43. 43.

    Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. Myc, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015).

  44. 44.

    Li, S. et al. Genome-wide coactivation analysis of PGC-1alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab 8, 105–117 (2008).

  45. 45.

    Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

  46. 46.

    Jeon, S. M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661–665 (2012).

  47. 47.

    Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

  48. 48.

    Tagal, V. et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat. Commun. 8, 14098 (2017).

  49. 49.

    Shen, J. et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 5, 752–767 (2015).

  50. 50.

    Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

  51. 51.

    Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

  52. 52.

    McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

  53. 53.

    Sumi-Ichinose, C., Ichinose, H., Metzger, D. & Chambon, P. SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells. Mol. Cell Biol. 17, 5976–5986 (1997).

  54. 54.

    Samur, M. K. RTCGAToolbox: a new tool for exporting TCGA Firehose data. PLoS One 9, e106397 (2014).

  55. 55.

    Blecher-Gonen, R. et al. High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat. Protoc. 8, 539–554 (2013).

  56. 56.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

  57. 57.

    Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).

  58. 58.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  59. 59.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

  60. 60.

    Liu, T. et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 12, R83 (2011).

  61. 61.

    Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–165 (2016).

Download references


We thank T. Tieu for vector cloning; the MD Anderson core facilities, including the Sequencing and Microarray Facility (SMF), the Non-coding RNA and Sequencing Facility, the Genetically Engineered Mouse Facility (GEMF), S. Jiang and K. Zhao for assistance in maintenance of mouse colonies; T. Gutschner for discussion; and D. Spring for editing. This study was supported by the Cancer Prevention Research Institute (R120501 to P.A.F.) and the Welch Foundation’s Robert A. Welch Distinguished University Chair Award (G-0040 to P.A.F.). F.M. is supported by ACS grant RSG1514501CDD and CPRIT grant RP140612. The results shown here are in part based upon data generated by the TCGA Research Network:

Author information


  1. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Yonathan Lissanu Deribe
    • , Christopher Terranova
    • , Fatima Khan
    • , Juan Martinez-Ledesma
    • , Chia-Chin Wu
    • , Claudia Reyes
    • , Qian Peng
    • , Akira Inoue
    • , Kunal Rai
    •  & P. Andrew Futreal
  2. Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Yuting Sun
    • , Jason Gay
    • , Guang Gao
    • , Robert A. Mullinax
    • , Tin Khor
    • , Ningping Feng
    • , Frederick Robinson
    •  & Joseph Marszalek
  3. Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Yu-Hsi Lin
    •  & Florian Muller
  4. Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Veena Kochat
  5. Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Chang-Gong Liu
  6. Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA

    • John M. Asara
  7. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Cesar Moran
  8. Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Jing Wang
  9. Department of Thoracic, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Bingliang Fang
    •  & Vali Papadimitrakopoulou
  10. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

    • Ignacio I. Wistuba


  1. Search for Yonathan Lissanu Deribe in:

  2. Search for Yuting Sun in:

  3. Search for Christopher Terranova in:

  4. Search for Fatima Khan in:

  5. Search for Juan Martinez-Ledesma in:

  6. Search for Jason Gay in:

  7. Search for Guang Gao in:

  8. Search for Robert A. Mullinax in:

  9. Search for Tin Khor in:

  10. Search for Ningping Feng in:

  11. Search for Yu-Hsi Lin in:

  12. Search for Chia-Chin Wu in:

  13. Search for Claudia Reyes in:

  14. Search for Qian Peng in:

  15. Search for Frederick Robinson in:

  16. Search for Akira Inoue in:

  17. Search for Veena Kochat in:

  18. Search for Chang-Gong Liu in:

  19. Search for John M. Asara in:

  20. Search for Cesar Moran in:

  21. Search for Florian Muller in:

  22. Search for Jing Wang in:

  23. Search for Bingliang Fang in:

  24. Search for Vali Papadimitrakopoulou in:

  25. Search for Ignacio I. Wistuba in:

  26. Search for Kunal Rai in:

  27. Search for Joseph Marszalek in:

  28. Search for P. Andrew Futreal in:


Y.L.D. designed the studies, performed experiments, interpreted the data and wrote the manuscript. P.A.F. provided intellectual input and wrote the manuscript. Y.S. performed the Seahorse experiments and analysis. F.K. performed the in vitro experiments and mouse genotyping. B.F. generated the PDX model. R.A.M., T.K., J.G. and N.F. conducted the in vivo pharmacology experiments. J.M.-L. and C.-C.W. performed the bioinformatics analysis. C.-G.L. performed the microarray profiling. C.T.,V.K. and K.R. performed the ChIP-seq analysis. Y.-H.L., F.M. and J.M.A. conducted the metabolomics experiment. I.I.W., J.W. and V.P. provided the BATTLE trial expression data. C.M. performed the pathology evaluation of the GEM model tumors. J.M. provided intellectual input. A.I., G.G., C.R., Q.P. and F.R. provided technical support.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Yonathan Lissanu Deribe or P. Andrew Futreal.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–11

  2. Reporting Summary

  3. Supplementary Table 1

    Gene expression data for SMARCA4 and select OXPHOS genes from the BATTLE-2 lung cancer trial dataset

About this article

Publication history





Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.