Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PM20D1 is a quantitative trait locus associated with Alzheimer’s disease

Abstract

The chances to develop Alzheimer’s disease (AD) result from a combination of genetic and non-genetic risk factors1, the latter likely being mediated by epigenetic mechanisms2. In the past, genome-wide association studies (GWAS) have identified an important number of risk loci associated with AD pathology3, but a causal relationship remains difficult to establish. In contrast, locus-specific or epigenome-wide association studies (EWAS) have revealed site-specific epigenetic alterations, which provide mechanistic insights for a particular risk gene but often lack the statistical power of GWAS4. Here, combining both approaches, we report a previously unidentified association of the peptidase M20-domain-containing protein 1 (PM20D1) with AD. We find that PM20D1 is a methylation and expression quantitative trait locus coupled to an AD-risk associated haplotype, which displays enhancer-like characteristics and contacts the PM20D1 promoter via a haplotype-dependent, CCCTC-binding-factor-mediated chromatin loop. Furthermore, PM20D1 is increased following AD-related neurotoxic insults at symptomatic stages in the APP/PS1 mouse model of AD and in human patients with AD who are carriers of the non-risk haplotype. In line, genetically increasing or decreasing the expression of PM20D1 reduces and aggravates AD-related pathologies, respectively. These findings suggest that in a particular genetic background, PM20D1 contributes to neuroprotection against AD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the PM20D1 locus and its relation to AD in human frontal cortex.
Fig. 2: Long-range chromatin interaction of the rs708727–PM20D1 locus.
Fig. 3: Functional relevance of PM20D1 in AD.

References

  1. 1.

    Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr1 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Chouliaras, L. et al. Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog. Neurobiol. 90, 498–510 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Scheltens, P. et al. Alzheimer’s disease. Lancet 388, 505–517 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Sanchez-Mut, J. V. & Gräff, J. Epigenetic alterations in Alzheimer’s disease. Front. Behav. Neurosci. 9, 347 (2015).

    Article  Google Scholar 

  6. 6.

    Lunnon, K. et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat. Neurosci. 17, 1164–1170 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    De Jager, P. L. et al. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17, 1156–1163 (2014).

    Article  Google Scholar 

  8. 8.

    Siegmund, K. D. et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2, e895 (2007).

    Article  Google Scholar 

  9. 9.

    Sanchez-Mut, J. V. et al. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease. Brain 136, 3018–3027 (2013).

    Article  Google Scholar 

  10. 10.

    Gräff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222–226 (2012).

    Article  Google Scholar 

  11. 11.

    D’Addario, C. et al. Transcriptional and epigenetic phenomena in peripheral blood cells of monozygotic twins discordant for Alzheimer’s disease, a case report. J. Neurol. Sci. 372, 211–216 (2017).

    Article  Google Scholar 

  12. 12.

    Hannon, E. et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat. Neurosci. 19, 48–54 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Stewart, S. E. et al. Genome-wide association study of obsessive–compulsive disorder. Mol. Psychiatry 18, 788–798 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Gamazon, E. R. et al. Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants. Mol. Psychiatry 18, 340–346 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Sanchez-Mut, J. V. et al. Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer’s disease. Hippocampus 24, 363–368 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Sanchez-Mut, J. V. et al. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl. Psychiatry 6, e718 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Heyn, H. et al. DNA methylation contributes to natural human variation. Genome Res. 23, 1363–1372 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  19. 19.

    Li, H., Teo, Y. Y. & Tan, E. K. Patterns of linkage disequilibrium at PARK16 may explain variances in genetic-association studies. Mov. Disord. 30, 1335–1342 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    GTEx Consortium. Human genomics. The Genotype–Tissue Expression (GTEx) pilot analysis: multi-tissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  Google Scholar 

  22. 22.

    Bulger, M. & Groudine, M. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327–339 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    Article  Google Scholar 

  24. 24.

    Suzuki, M., Yamada, T., Kihara-Negishi, F., Sakurai, T. & Oikawa, T. Direct association between PU.1 and MeCP2 that recruits mSin3A–HDAC complex for PU.1-mediated transcriptional repression. Oncogene 22, 8688–8698 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Ashoor, H., Kleftogiannis, D., Radovanovic, A. & Bajic, V. B. DENdb: database of integrated human enhancers. Database (Oxford) 2015, bav085 (2015).

    Article  Google Scholar 

  27. 27.

    Smith, E. & Shilatifard, A. Enhancer biology and enhanceropathies. Nat. Struct. Mol. Biol. 21, 210–219 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–21936 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Borchelt, D. R. et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939–945 (1997).

    CAS  Article  Google Scholar 

  30. 30.

    Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ-secretase. Hum. Mol. Genet. 13, 159–170 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Long, J. Z. et al. The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell 166, 424–435 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Feinberg, A. P. et al. Personalized epigenomic signatures that are stable over time and co-vary with body mass index. Sci. Transl. Med. 2, 49ra67 (2010).

    Article  Google Scholar 

  33. 33.

    Larrick, J. W., Larrick, J. W. & Mendelsohn, A. R. Uncoupling mitochondrial respiration for diabesity. Rejuvenation Res. 19, 337–340 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Kivipelto, M. & Mangialasche, F. Alzheimer’s disease: to what extent can Alzheimer’s disease be prevented? Nat. Rev. Neurol. 10, 552–553 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Maltby, V. E. et al. Differential methylation at MHC in CD4+ T cells is associated with multiple sclerosis independently of HLA-DRB1. Clin. Epigenetics 9, 71 (2017).

    Article  Google Scholar 

  36. 36.

    Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  Google Scholar 

  37. 37.

    Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  39. 39.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27, 718–719 (2011).

    Article  Google Scholar 

  41. 41.

    Watson, C. T. et al. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med. 8, 5 (2016).

    Article  Google Scholar 

  42. 42.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    Chen, M. H. & Yang, Q. GWAF: an R package for genome-wide association analyses with family data. Bioinformatics 26, 580–581 (2010).

    Article  Google Scholar 

  44. 44.

    Guedj, M., Wojcik, J., Della-Chiesa, E., Nuel, G. & Forner, K. A fast, unbiased and exact allelic test for case–control association studies. Hum. Hered. 61, 210–221 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    Braak, H. & Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  Article  Google Scholar 

  46. 46.

    Heyn, H. et al. Distinct DNA methylomes of newborns and centenarians. Proc. Natl. Acad. Sci. USA 109, 10522–10527 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Klein, W. L. Aβ toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem. Int. 41, 345–352 (2002).

    CAS  Article  Google Scholar 

  48. 48.

    Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 1, 177–200 (2009).

    CAS  Article  Google Scholar 

  49. 49.

    Fernandez, A. F. et al. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res. 19, 438–451 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37, e45 (2009).

    CAS  Article  Google Scholar 

  51. 51.

    Narayanan, M. et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol. 10, 743 (2014).

    Article  Google Scholar 

  52. 52.

    Webster, J. A. et al. Genetic control of human brain transcript expression in Alzheimer’s disease. Am. J. Hum. Genet. 84, 445–458 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    Hokama, M. et al. Altered expression of diabetes-related genes in Alzheimer’s disease brains: the Hisayama study. Cereb. Cortex 24, 2476–2488 (2014).

    Article  Google Scholar 

  54. 54.

    Court, F. et al. Long-range chromatin interactions at the mouse Igf2H19 locus reveal a novel paternally expressed long noncoding RNA. Nucleic Acids Res 39, 5893–5906 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work in the laboratory of J.G. is supported by the SYNAPSIS Foundation, the Béatrice Ederer-Weber Stiftung, the Floshield Foundation and the Alzheimer’s Association (grant no. NIRG-15-363964). The laboratory of D.M. is supported by the Foundation Jérôme Lejeune, Spanish Ministerio de Educación y Competitividad (grant no. BFU2014-53093). The laboratory of J.P.-T. is supported by the Spanish Ministerio de Economía, Industria y Competitividad and the FEDER programme from the EU (grant no. SAF2014-59469-R) and the CIBERNED. J.V.S.-M. is supported by a SYNAPSIS Foundation Fellowship for Advanced PostDocs and the Heidi Seiler-Stiftung foundation. H.H. is a Miguel Servet (CP14/00229) researcher funded by the Spanish Institute of Health Carlos III (ISCIII). B.A.S. is an EMBO long-term fellow (ALTF 1605-2014, Marie Curie Actions, LTFCOFUND2013, GA-2013-609409). A.M.-S. is a recipient of a FPI PhD studentship from MINECO. M.E. is an ICREA Research Professor. J.G. is an MQ fellow and a NARSAD Independent Investigator.

Author information

Affiliations

Authors

Contributions

J.V.S.-M., H.H., M.E. and J.G. conceived the project and designed the experiments; J.V.S.-M., B.A.S., L.D., P.G.-E., L.G., A.M.-S. and D.M. performed the experiments; J.V.S.-M., E.V. and S.S. performed the bioinformatics analysis of the data; J.P.-T., I.F., B.S., D.M. and M.E. contributed to the interpretation of the results; and J.V.S.-M. and J.G. wrote the paper, with input and comments by all of the authors.

Corresponding author

Correspondence to Johannes Gräff.

Ethics declarations

Competing interests

A provisional patent application has been filed on the use of PM20D1 methylation and haplotype as biomarkers for Alzheimer’s disease (International Application Number PCT/EP2017/067848), with J.V.S.-M., H.H., M.E. and J.G. listed as inventors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–7

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Mut, J.V., Heyn, H., Silva, B.A. et al. PM20D1 is a quantitative trait locus associated with Alzheimer’s disease. Nat Med 24, 598–603 (2018). https://doi.org/10.1038/s41591-018-0013-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing