Subjects

Abstract

Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P2 potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38–GSK3β–β-catenin and WNT5A–LRP5 pathways. Accordingly, S1P2-deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Maceyka, M., Harikumar, K. B., Milstien, S. & Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 22, 50–60 (2012).

  2. 2.

    Takabe, K., Paugh, S. W., Milstien, S. & Spiegel, S. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol. Rev. 60, 181–195 (2008).

  3. 3.

    Rosen, H., Stevens, R. C., Hanson, M., Roberts, E. & Oldstone, M. B. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu. Rev. Biochem. 82, 637–662 (2013).

  4. 4.

    Kunkel, G. T., Maceyka, M., Milstien, S. & Spiegel, S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat. Rev. Drug Discov. 12, 688–702 (2013).

  5. 5.

    Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

  6. 6.

    Ishii, M. & Kikuta, J. Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim. Biophys. Acta 1831, 223–227 (2013).

  7. 7.

    Keller, J. et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat. Commun. 5, 5215 (2014).

  8. 8.

    Ryu, J. et al. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 25, 5840–5851 (2006).

  9. 9.

    Ishii, M., Kikuta, J., Shimazu, Y., Meier-Schellersheim, M. & Germain, R. N. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 207, 2793–2798 (2010).

  10. 10.

    Ishii, T., Shimazu, Y., Nishiyama, I., Kikuta, J. & Ishii, M. The role of sphingosine 1-phosphate in migration of osteoclast precursors; an application of intravital two-photon microscopy. Mol. Cells 31, 399–403 (2011).

  11. 11.

    Pederson, L., Ruan, M., Westendorf, J. J., Khosla, S. & Oursler, M. J. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci. USA 105, 20764–20769 (2008).

  12. 12.

    Lotinun, S. et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J. Clin. Invest. 123, 666–681 (2013).

  13. 13.

    Vogel, P. et al. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS One 4, e4112 (2009).

  14. 14.

    Billich, A. et al. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis. PLoS One 8, e59630 (2013).

  15. 15.

    Pelletier, D. & Hafler, D. A. Fingolimod for multiple sclerosis. N. Engl. J. Med. 366, 339–347 (2012).

  16. 16.

    Khosla, S. Minireview: the OPG/RANKL/RANK system. Endocrinology 142, 5050–5055 (2001).

  17. 17.

    Boyce, B. F., Xing, L. & Chen, D. Osteoprotegerin, the bone protector, is a surprising target for beta-catenin signaling. Cell Metab. 2, 344–345 (2005).

  18. 18.

    Yokoyama, N., Yin, D. & Malbon, C. C. Abundance, complexation, and trafficking of Wnt/beta-catenin signaling elements in response to Wnt3a. J. Mol. Signal 2, 11 (2007).

  19. 19.

    Bikkavilli, R. K., Feigin, M. E. & Malbon, C. C. p38 mitogen-activated protein kinase regulates canonical Wnt-β-catenin signaling by inactivation of GSK3β. J. Cell Sci. 121, 3598–3607 (2008).

  20. 20.

    Spencer, G. J., Utting, J. C., Etheridge, S. L., Arnett, T. R. & Genever, P. G. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFκ ligand and inhibits osteoclastogenesis in vitro. J. Cell Sci. 119, 1283–1296 (2006).

  21. 21.

    Mizuno, A. et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun. 247, 610–615 (1998).

  22. 22.

    Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

  23. 23.

    Linhart, H. G. et al. C/EBPα is required for differentiation of white, but not brown, adipose tissue. Proc. Natl. Acad. Sci. USA 98, 12532–12537 (2001).

  24. 24.

    Kang, S. et al. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. J. Biol. Chem. 282, 14515–14524 (2007).

  25. 25.

    Yu, W. H. et al. PPARγ suppression inhibits adipogenesis but does not promote osteogenesis of human mesenchymal stem cells. Int. J. Biochem. Cell Biol. 44, 377–384 (2012).

  26. 26.

    Song, L. et al. Loss of wnt/beta-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J. Bone Miner. Res. 27, 2344–2358 (2012).

  27. 27.

    Jee, W. S. & Yao, W. Overview: animal models of osteopenia and osteoporosis. J. Musculoskelet. Neuronal Interact. 1, 193–207 (2001).

  28. 28.

    Carr, M. C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 88, 2404–2411 (2003).

  29. 29.

    Stubbins, R. E., Holcomb, V. B., Hong, J. & Núñez, N. P. Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur. J. Nutr. 51, 861–870 (2012).

  30. 30.

    Völzke, H. et al. Cohort profile: the study of health in Pomerania. Int. J. Epidemiol. 40, 294–307 (2011).

  31. 31.

    Hans, D. et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348, 511–514 (1996).

  32. 32.

    Cosman, F. et al. Clinician's guide to prevention and treatment of osteoporosis. Osteoporos. Int. 25, 2359–2381 (2014).

  33. 33.

    Wright, N. C. et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 29, 2520–2526 (2014).

  34. 34.

    McClung, M. R. Clinical utility of anti-sclerostin antibodies. Bone 96, 3–7 (2017).

  35. 35.

    Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

  36. 36.

    Rosen, E. D. et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 16, 22–26 (2002).

  37. 37.

    Zhang, C. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. J. Orthop. Surg. Res. 5, 37 (2010).

  38. 38.

    Halvorsen, Y. D. et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 7, 729–741 (2001).

  39. 39.

    Takahashi, T. Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro. Calcif. Tissue Int. 88, 336–347 (2011).

  40. 40.

    Wu, L. et al. Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix. Mol. Cell. Biochem. 301, 83–92 (2007).

  41. 41.

    Kim, S. W., Her, S. J., Kim, S. Y. & Shin, C. S. Ectopic overexpression of adipogenic transcription factors induces transdifferentiation of MC3T3-E1 osteoblasts. Biochem. Biophys. Res. Commun. 327, 811–819 (2005).

  42. 42.

    Lecka-Czernik, B. et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J. Cell. Biochem. 74, 357–371 (1999).

  43. 43.

    Moldes, M. et al. Peroxisome-proliferator-activated receptor γ suppresses Wnt/β-catenin signalling during adipogenesis. Biochem. J. 376, 607–613 (2003).

  44. 44.

    Wu, Z. et al. Cross-regulation of C/EBP α and PPAR γ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3, 151–158 (1999).

  45. 45.

    Gaur, T. et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132–33140 (2005).

  46. 46.

    Günther, T. & Schüle, R. Fat or bone? A non-canonical decision. Nat. Cell Biol. 9, 1229–1231 (2007).

  47. 47.

    Zioco, E. et al. Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget 7, 20223–20235 (2016).

  48. 48.

    Ali, A. A. et al. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146, 1226–1235 (2005).

  49. 49.

    Shockley, K. R. et al. PPARγ2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J. Cell. Biochem. 106, 232–246 (2009).

  50. 50.

    Hashimoto, Y. et al. Sphingosine-1-phosphate inhibits differentiation of C3H10T1/2 cells into adipocyte. Mol. Cell. Biochem. 401, 39–47 (2015).

  51. 51.

    Goetzl, E. J. Diverse pathways for nuclear signaling by G protein–coupled receptors and their ligands. FASEB J. 21, 638–642 (2007).

  52. 52.

    Parham, K. A. et al. Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-gamma that regulates neoangiogenesis. FASEB J. 29, 3638–3653 (2015).

  53. 53.

    Peptan, I. A., Hong, L. & Mao, J. J. Comparison of osteogenic potentials of visceral and subcutaneous adipose-derived cells of rabbits. Plast. Reconstr. Surg. 117, 1462–1470 (2006).

  54. 54.

    Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

  55. 55.

    Kowalski, G. M., Carey, A. L., Selathurai, A., Kingwell, B. A. & Bruce, C. R. Plasma sphingosine-1-phosphate is elevated in obesity. PLoS One 8, e72449 (2013).

  56. 56.

    Lee, S. H. et al. Higher circulating sphingosine 1-phosphate levels are associated with lower bone mineral density and higher bone resorption marker in humans. J. Clin. Endocrinol. Metab. 97, E1421–E1428 (2012).

  57. 57.

    Bae, S.J. et al. The circulating sphingosine-1-phosphate level predicts incident fracture in postmenopausal woman: a 3.5-year follow-up observation study. Osteoporos. Int. 27, 2533-2541 (2016).

  58. 58.

    Zhang, G. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18, 307–314 (2012).

  59. 59.

    Liang, C. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med 21, 288–294 (2015).

  60. 60.

    Zhao, L. J. et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J. Bone Miner. Res. 23, 17–29 (2008).

  61. 61.

    Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

  62. 62.

    Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).

  63. 63.

    Kawamoto, T. & Kawamoto, K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamot's film method (2012). Methods Mol. Biol. 1130, 149–164 (2014).

  64. 64.

    Miao, D. & Scutt, A. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. J. Histochem. Cytochem. 50, 333–340 (2002).

  65. 65.

    Dempster, D. W. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2–17 (2013).

  66. 66.

    Declercq, H. et al. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 25, 757–768 (2004).

  67. 67.

    Kraus, D. et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258–262 (2014).

  68. 68.

    Kumar, A. et al. Profile of clients tested HIV positive in a voluntary counseling and testing center of a district hospital, Udupi, South Kannada. Indian J. Community Med. 33, 156–159 (2008).

  69. 69.

    Burghoff, S. et al. Deletion of CD73 promotes dyslipidemia and intramyocellular lipid accumulation in muscle of mice. Arch. Physiol. Biochem. 119, 39–51 (2013).

  70. 70.

    Tucci, S., Flögel, U., Sturm, M., Borsch, E. & Spiekerkoetter, U. Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a beta-oxidation defect. Am. J. Clin. Nutr. 94, 439–449 (2011).

  71. 71.

    Moritz, E. et al. Reference intervals for serum sphingosine-1-phosphate in the population-based Study of Health in Pomerania. Clin. Chim. Acta 468, 25–31 (2017).

  72. 72.

    Schürer, C. et al. Fracture risk and risk factors for osteoporosis. Dtsch. Arztebl. Int. 112, 365–371 (2015).

  73. 73.

    Stone, C. J. & Koo, C. Y. Additive splines in statistics. in Statistical Computing Section, Proceedings of the American Statistical Association 45–48 (American Statistical Association, Washington, DC, 1985).

Download references

Acknowledgements

We gratefully acknowledge excellent technical help by Kerstin Abou Hamed, forthcoming support by the Zentrales Tierlabor, Universitätsklinikum Essen (G. Hilken, P. Dammann, A. Wissmann, R. Waldschütz) and stimulating discussions with A. Levkau. I dedicate this work to my father, Lubomir Levkau. This work was supported in part by the Deutsche Forschungsgemeinschaft, GRK 2098, projects 9-11 (B.L., P.K.), SFB 1116, projects A08 (J.W.F.) and B02, B05 (U.F.). The work was also supported by the Alexander von Humboldt Foundation through a research fellowship awarded to M.V. The SHIP-Trend study is part of the Community Medicine Research net of the University of Greifswald, Germany, funded by the Federal Ministry of Education and Research (Grants 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs and the Social Ministry of the Federal State of Mecklenburg-West Pomerania. This work was also funded in part by grants from the Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (B.H.R., M.D., E.S.).

Author information

Affiliations

  1. Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany

    • Sarah Weske
    • , Mithila Vaidya
    • , Alina Reese
    • , Karin von Wnuck Lipinski
    • , Petra Keul
    • , Gerd Heusch
    •  & Bodo Levkau
  2. Institute of Pharmacology and Clinical Pharmacology, University of Düsseldorf, Düsseldorf, Germany

    • Julia K Bayer
    •  & Jens W Fischer
  3. Institute of Molecular Cardiology, University of Düsseldorf, Düsseldorf, Germany

    • Ulrich Flögel
  4. Institute of Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany

    • Jens Nelsen
    •  & Matthias Epple
  5. Department of Bioengineering, University of Washington, Seattle, WA, USA

    • Marta Scatena
  6. Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

    • Edzard Schwedhelm
  7. German Centre for Cardiovascular Research (DZHK), partner site Hamburg, Hamburg, Germany

    • Edzard Schwedhelm
  8. DZHK, partner site Greifswald, Greifswald, Germany

    • Marcus Dörr
    • , Eileen Moritz
    •  & Bernhard H Rauch
  9. Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany

    • Marcus Dörr
  10. Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany

    • Henry Völzke
  11. Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany

    • Eileen Moritz
    • , Bernhard H Rauch
    •  & Markus H Gräler
  12. Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany

    • Anke Hannemann
  13. Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, and Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany

    • Markus H Gräler

Authors

  1. Search for Sarah Weske in:

  2. Search for Mithila Vaidya in:

  3. Search for Alina Reese in:

  4. Search for Karin von Wnuck Lipinski in:

  5. Search for Petra Keul in:

  6. Search for Julia K Bayer in:

  7. Search for Jens W Fischer in:

  8. Search for Ulrich Flögel in:

  9. Search for Jens Nelsen in:

  10. Search for Matthias Epple in:

  11. Search for Marta Scatena in:

  12. Search for Edzard Schwedhelm in:

  13. Search for Marcus Dörr in:

  14. Search for Henry Völzke in:

  15. Search for Eileen Moritz in:

  16. Search for Anke Hannemann in:

  17. Search for Bernhard H Rauch in:

  18. Search for Markus H Gräler in:

  19. Search for Gerd Heusch in:

  20. Search for Bodo Levkau in:

Contributions

S.W., M.V., A.R., K.v.W.L., J.K.B., P.K., J.N., M.E., U.F., E.S., M.D., E.M., H.V. and M.S. performed research, collected, analyzed and interpreted data, performed statistical analysis and wrote the manuscript. J.W.F., G.H., M.S. and M.H.G. contributed vital reagents or analytical tools and interpreted data. S.W., A.H., B.H.R. and B.L. designed research, analyzed and interpreted data and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Bodo Levkau.

Electronic supplementary material

  1. Supplementary Text and Figures

    Supplementary Figures 1–12 and Supplementary Tables 1–3

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41591-018-0005-y

Further reading