Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ZBTB46 coordinates angiogenesis and immunity to control tumor outcome

Abstract

Tumor angiogenesis and immunity show an inverse correlation in cancer progression and outcome1. Here, we report that ZBTB46, a repressive transcription factor and a widely accepted marker for classical dendritic cells (DCs)2,3, controls both tumor angiogenesis and immunity. Zbtb46 was downregulated in both DCs and endothelial cells by tumor-derived factors to facilitate robust tumor growth. Zbtb46 downregulation led to a hallmark pro-tumor microenvironment (TME), including dysfunctional vasculature and immunosuppressive conditions. Analysis of human cancer data revealed a similar association of low ZBTB46 expression with an immunosuppressive TME and a worse prognosis. In contrast, enforced Zbtb46 expression led to TME changes to restrict tumor growth. Mechanistically, Zbtb46-deficient endothelial cells were highly angiogenic, and Zbtb46-deficient bone marrow progenitors upregulated Cebpb and diverted the DC program to immunosuppressive myeloid lineage output, potentially explaining the myeloid lineage skewing phenomenon in cancer4. Conversely, enforced Zbtb46 expression normalized tumor vessels and, by suppressing Cebpb, skewed bone marrow precursors toward immunostimulatory myeloid lineage output, leading to an immune-hot TME. Remarkably, Zbtb46 mRNA treatment synergized with anti-PD1 immunotherapy to improve tumor management in preclinical models. These findings identify ZBTB46 as a critical factor for angiogenesis and for myeloid lineage skewing in cancer and suggest that maintaining its expression could have therapeutic benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZBTB46 is a negative regulator of tumor progression.
Fig. 2: ZBTB46 normalizes tumor vasculature.
Fig. 3: ZBTB46 promotes antitumor immunity.
Fig. 4: ZBTB46 remodels the TME into an antitumor immunostimulatory milieu.
Fig. 5: Therapeutic maintenance of ZBTB46 improves cancer immunotherapy outcome.

Similar content being viewed by others

Data availability

Sequencing data are available at the Gene Expression Omnibus under accessions GSE226087 (bulk RNA-seq) and GSE264124 (scRNA-seq). Human bulk RNA tumor datasets are available from the TCGA database. Source data are provided with this paper.

References

  1. Subramanian, M., Kabir, A. U., Barisas, D., Krchma, K. & Choi, K. Conserved angio-immune subtypes of the tumor microenvironment predict response to immune checkpoint blockade therapy. Cell Rep. Med. 4, 100896 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Satpathy, A. T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meredith, M. M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, C., Hua, Q. & Zheng, L. Generation of myeloid cells in cancer: the spleen matters. Front. Immunol. 11, 1126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Salmon, H., Remark, R., Gnjatic, S. & Merad, M. Host tissue determinants of tumour immunity. Nat. Rev. Cancer 19, 215–227 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bejarano, L., Jordao, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jain, R. K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris: The Tabula Muris Consortium. Nature 562, 367–372 (2018).

    Article  PubMed Central  Google Scholar 

  12. Meredith, M. M. et al. Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state. J. Exp. Med. 209, 1583–1593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Y. et al. ZBTB46 is a shear-sensitive transcription factor inhibiting endothelial cell proliferation via gene expression regulation of cell cycle proteins. Lab. Invest. 99, 305–318 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, aak9670 (2017).

    Article  Google Scholar 

  16. Kabir, A. U. et al. Dual role of endothelial Myct1 in tumor angiogenesis and tumor immunity. Sci. Transl. Med. 13, eabb6731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Devalaraja, S. et al. Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression. Cell 180, 1098–1114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirai, H. et al. C/EBPbeta is required for ‘emergency’ granulopoiesis. Nat. Immunol. 7, 732–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Huber, R., Pietsch, D., Panterodt, T. & Brand, K. Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal. 24, 1287–1296 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Cohen, D. M., Lim, H. W., Won, K. J. & Steger, D. J. Shared nucleotide flanks confer transcriptional competency to bZip core motifs. Nucleic Acids Res. 46, 8371–8384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moreno Ayala, M. A. et al. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immunity 56, 1613–1630 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Xing, S. et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J. Exp. Med. 216, 847–866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dalod, M., Chelbi, R., Malissen, B. & Lawrence, T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 33, 1104–1116 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, P. et al. Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment. Cancer Discov. 10, 371–381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kabir, A. U. et al. Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight 3, e97349 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yan, H. et al. Induction of WNT16 via peptide-mRNA nanoparticle-based delivery maintains cartilage homeostasis. Pharmaceutics https://doi.org/10.3390/pharmaceutics12010073 (2020).

  28. Pandey, V. K., Amin, P. J. & Shankar, B. S. COX-2 inhibitor prevents tumor induced down regulation of classical DC lineage specific transcription factor Zbtb46 resulting in immunocompetent DC and decreased tumor burden. Immunol. Lett. 184, 23–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, W. et al. ZBTB46 defines and regulates ILC3s that protect the intestine. Nature 609, 159–165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi, Y. & Jung, K. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Exp. Mol. Med. 55, 2308–2319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Cantelmo, A. R., Pircher, A., Kalucka, J. & Carmeliet, P. Vessel pruning or healing: endothelial metabolism as a novel target? Expert Opin. Ther. Targets 21, 239–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Grossman, R. L. et al. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

    Article  PubMed  Google Scholar 

  38. Ponten, F., Jirstrom, K. & Uhlen, M. The Human Protein Atlas—a tool for pathology. J. Pathol. 216, 387–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Brown, C. R. & Reiner, S. L. Bone-marrow chimeras reveal hemopoietic and nonhemopoietic control of resistance to experimental Lyme arthritis. J. Immunol. 165, 1446–1452 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Halabi, C. M. et al. Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries. Sci. Adv. 3, e1602532 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vesely, M. Tumor antigens revealed by exome seqeuncing drive editing of tumor immunogenicity. in All Theses and Dissertations (ETDs) Washington University in St. Louis https://doi.org/10.7936/K7C8278N (2013).

  43. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su, X. et al. Antagonizing integrin beta3 increases immune suppression in cancer. Cancer Res. 76, 3484–3495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, G. L., Zhang, Y., Cao, K. X. & Wang, X. M. Orthotopic injection of breast cancer cells into the mice mammary fat pad. J. Vis. Exp. https://doi.org/10.3791/58604 (2019).

    Article  PubMed  Google Scholar 

  46. Hou, K. K., Pan, H., Lanza, G. M. & Wickline, S. A. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials 34, 3110–3119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lockhart, J. H. et al. Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis. Mol. Ther. 29, 1744–1757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hou, K. K., Pan, H., Schlesinger, P. H. & Wickline, S. A. A role for peptides in overcoming endosomal entrapment in siRNA delivery—a focus on melittin. Biotechnol. Adv. 33, 931–940 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hou, K. K., Pan, H., Ratner, L., Schlesinger, P. H. & Wickline, S. A. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS Nano 7, 8605–8615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, D. et al. ER71 acts downstream of BMP, notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2, 497–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  52. Thomas, G. D. et al. Deleting an Nr4a1 super-enhancer subdomain ablates Ly6Clow monocytes while preserving macrophage gene function. Immunity 45, 975–987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Devalaraja, S. & Haldar, M. Intratumoral monocyte transfer to examine monocyte differentiation in the tumor microenvironment. STAR Protoc. 1, 100188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nakatsu, M. N. & Hughes, C. C. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 443, 65–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Kastana, P. et al. Matrigel plug assay for in vivo evaluation of angiogenesis. Methods Mol. Biol. 1952, 219–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Hippen, A. A. et al. miQC: an adaptive probabilistic framework for quality control of single-cell RNA-sequencing data. PLoS Comput. Biol. 17, e1009290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Terekhova, M. et al. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C+GZMBCD8+ memory T cells and accumulation of type 2 memory T cells. Immunity 56, 2836–2854 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. Preprint at bioRxiv https://doi.org/10.1101/060012 (2016).

  63. Mysore, V. et al. FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nat. Commun. 12, 4791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aandahl, E. M. et al. CD7 is a differentiation marker that identifies multiple CD8 T cell effector subsets. J. Immunol. 170, 2349–2355 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen, H. H. et al. Naive CD8+ T cell derived tumor-specific cytotoxic effectors as a potential remedy for overcoming TGF-beta immunosuppression in the tumor microenvironment. Sci. Rep. 6, 28208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Niborski, L. L. et al. CD8+ T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas. Nat. Commun. 13, 3739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T Cells. Cell 166, 1500–1511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang, W. et al. Exhausted CD8+ T cells in the tumor immune microenvironment: new pathways to therapy. Front. Immunol. 11, 622509 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Cheng, D. et al. Proliferative exhausted CD8+ T cells exacerbate long-lasting anti-tumor effects in human papillomavirus-positive head and neck squamous cell carcinoma. Elife 12, e.82705 (2023).

    Article  Google Scholar 

  72. Siemaszko, J., Marzec-Przyszlak, A. & Bogunia-Kubik, K. Activating NKG2C receptor: functional characteristics and current strategies in clinical applications. Arch. Immunol. Ther. Exp. 71, 9 (2023).

    Article  CAS  Google Scholar 

  73. Murad, S. et al. NKG2C+ NK cells for immunotherapy of glioblastoma multiforme. Int. J. Mol. Sci. 23, 5857 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tata, A. et al. Combination blockade of KLRG1 and PD-1 promotes immune control of local and disseminated cancers. Oncoimmunology 10, 1933808 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ito, M. et al. Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J. Exp. Med. 203, 289–295 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Borrego, F., Robertson, M. J., Ritz, J., Pena, J. & Solana, R. CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 97, 159–165 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Iglesias-Guimarais, V. et al. IFN-stimulated gene 15 is an alarmin that boosts the CTL response via an innate, NK cell-dependent route. J. Immunol. 204, 2110–2121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Khantakova, D., Brioschi, S. & Molgora, M. Exploring the impact of TREM2 in tumor-associated macrophages. Vaccines 10, 943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Orecchioni, M., Ghosheh, Y., Pramod, A. B. & Ley, K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10, 1084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jablonski, K. A. et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS ONE 10, e0145342 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Murphy, T. L. et al. Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 34, 93–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Nirschl, C. J. et al. IFNgamma-dependent tissue-immune homeostasis is co-opted in the tumor microenvironment. Cell 170, 127–141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Collin, M. & Bigley, V. Human dendritic cell subsets: an update. Immunology 154, 3–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shortman, K. & Liu, Y. J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sprenkeler, E. G. G. et al. S100A8/A9 is a marker for the release of neutrophil extracellular traps and induces neutrophil activation. Cells 11, 236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Han, C., Liu, T. & Yin, R. Biomarkers for cancer-associated fibroblasts. Biomark. Res. 8, 64 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hsia, L. T. et al. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers. Proc. Natl Acad. Sci. USA 113, E2162–E2171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, Z. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun. 11, 5077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. M. Murphy at Washington University in St. Louis for the Zbtb46gfp/gfp (Zbtb46 KO) mice and M. Egeblad at Cold Spring Harbor Laboratory for MMTV-PyMT mice. We thank our colleagues at Washington University, M. J. Miller for the Tg(Cdh5-cre/ERT2)1Rha mice, which were originally obtained from R. H. Adams at the Max Planck Institute, Germany, R.D. Schreiber for 1956 and 1969 sarcoma cells, K. Lavine for MCECs and K. Weilbaecher for PyMT-BO1-GFP-Luc cells. We also thank A. S. Krupnick at the University of Virginia for providing LLC-GFP cells. We thank Washington University Center for Cellular Imaging (WUCCI) and Pathology FACS core for providing access to the light microscopes and FACS facility, respectively. We also thank GTAC@MGI for performing the RNA-seq. This work was supported by NIH grants R01HL149954, R01HL55337 and R01CA271714 (to K.C.).

Author information

Authors and Affiliations

Authors

Contributions

A.U.K. and K.C. conceived the idea, designed the experiments and wrote the manuscript. A.U.K. performed all experiments and analyzed data. C.Z. and M.N.A. analyzed the TME single-cell RNA-seq dataset. M.S. analyzed bulk RNA-seq data and TCGA dataset. M.K. helped with the ChIP–qPCR experiments. J.W. and K.K. helped with BM chimeric mice generation and analysis. C.M.H. helped with the cardiovascular measures of the ZKO mice. H.P. and S.A.W. provided p5RHH peptides for the nanoparticles. X.W. and D.H.F. helped with the Zbtb46 lentiviral constructs. K.C. provided overall supervision and coordinated all the experimental activities. All authors approved the final manuscript.

Corresponding author

Correspondence to Kyunghee Choi.

Ethics declarations

Competing interests

S.A.W. and H.P. have equity with Altamira Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Lorenzo Mortara and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ioana Staicu, in collaboration with the Nature Immunology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Zbtb46 is a tumor suppressor and its expression is downregulated in tumor.

a, Zbtb46 expression in different cell population in mouse Trachea and Heart analyzed by single cell RNA sequencing. Data acquired from the Tabula Muris portal: https://tabula-muris.ds.czbiohub.org/. b-c, Analysis of (b) vital cardiovascular parameters and (c) pressure-diameter measurements in the Zbtb46 KO (n = 4) and wild-type (n = 11) mice. d, Zbtb46 expression in ECs and DCs isolated from the mammary gland (MEC and MDC) of the healthy and from the PyMT-BO1 tumor-bearing (TEC and TDC) wild-type mice (n = 4 for D19-TEC and -TDC, 5 for SDC, and 6 for the remaining groups). e-f, Zbtb46 expression in ECs from Lung (LEC) and mammary gland (MEC) of the healthy wild-type mice and from the tumors (TEC) of the (e) LLC carcinoma (n = 3) and (f) MMTV-PyMT (n = 4 for MEC and 3 for TEC) bearing mice. g-h, Analysis of ZBTB46 + (GFP+) (g) ECs and (h) DCs from the lungs and spleen of the healthy and tumors of the 1956 sarcoma-bearing Zbtb46gfp/+ mice (n = 4). i, Measurements of B, CD8T, Treg, and XCR1+ cDC1-like myeloid cells in the tumor-draining lymph nodes of 1956 sarcoma-bearing mice (n = 3). j, Overall survival of patients with indicated cancer separated by ZBTB46 expression as high (>50th percentile) and low (<50th percentile). Survival data were derived from publicly available clinical records of TCGA patients. k, Activated DCs, M1 macrophages, B cells, and CD8 + T effector memory cells in high vs. low ZBTB46 expressing tumors in patients from the TCGA database analyzed with the CIBERSORT algorithm. Data are mean±SD. P-values were determined using two-tailed Student’s t-test for b, e-h, and i, One-way ANOVA with Tukey’s multiple comparison test for c or with Dunnett’s test for d, Log ranked test for j, and unpaired t-tests with Holm-Šídák multiple comparison test for k. ns=not significant.

Source data

Extended Data Fig. 2 Both endothelial and hematopoietic Zbtb46 expression contribute to the suppression of tumor progression and ZBTB46 maintains endothelial cells quiescent in the tumor context.

a, Stromal and hematopoietic Zbtb46 KO BM chimera generation scheme and FACS analysis of CD45.1 (for stromal KO) or CD45.2 (for hematopoietic KO) repopulation in PB (n = 4). b, 1956 sarcoma and PyMT-BO1 progression in wild-type (n = 7 for 1956 and 3 for PyMT-BO1), VEC-cre Zbtb46 KO (n = 4 for 1956 and 3 for PyMT-BO1), VAV-cre Zbtb46 KO (n = 7 for 1956 and 5 for PyMT-BO1), and Zbtb46 KO (n = 6 for 1956 and 3 for PyMT-BO1) mice. c, PyMT-BO1 growth in wild-type, VEC-cre Zbtb46 KO, CD11c-cre Zbtb46 KO, and Zbtb46 KO mice (n = 3). d, Zbtb46 expression in Lung-ECs from wild-type and Tamoxifeninducible VEC-cre Zbtb46 CKO (iVEC-cre ZKO) mice (n = 3). e,1956 sarcoma growth in wild-type (n = 6), iVEC-cre ZKO (n = 6), and Zbtb46 KO (n = 5) mice. f-g, Representative images with quantification of tumoral CD31+ vessels in (f) wild-type (n = 10), VEC-cre Zbtb46 KO (n = 6), VAV-cre Zbtb46 KO (n = 7), CD11c-Cre Zbtb46 CKO (n = 4), Zbtb46 KO (n = 11), and (g) iVEC-cre ZKO mice (n = 10). h, Proliferation of the cultured parental, Zbtb46 knockdown (ZKD), and Zbtb46 overexpressing (ZOE) MCEC cells (pooled from 2 biological replicates, n = 3/replicates). i, Zbtb46 expression in tumor-ECs, tumor-DCs, and GFP+ tumors from 1956 sarcoma (n = 9) and PyMT-BO1 (n = 9 for tumor-EC and tumor-DC and 4 for tumor cells) -bearing wild-type mice with empty vector (EV) or Zbtb46 (ZOE) lentiviral overexpression construct intra-tumor treatment. j, 1956 sarcoma and PyMT-BO1 progression with empty vector (1956-EV and BO1-EV) or Zbtb46 (1956-ZOE and BO1-ZOE) lentiviral overexpression or Zbtb46 shRNA construct expression (1956-ZKD and BO1-ZKD) in wild-type mice (n = 6). k-l, Representative images and quantification for (k) vascular perfusion (n = 7) and (l) pericyte coverage (n = 5) as measured by the FITC-lectin binding to vessels and NG2+ vascular area, respectively, in the 1956 sarcoma tissue of intra-tumor EV or ZOE lentivirus treated wild-type and Zbtb46 KO mice. m, Representative images with quantification of tumoral CD31+ vessels in wild-type mice bearing 1956 sarcoma co-transplanted with parental ECs (TC + WTEC) or Zbtb46-overexpressed ECs (TC + ZOEEC) (n = 6). Data are mean±SD. P-values were determined using One-way ANOVA with Dunnett’s test for a-c, e, f, h, and k and two-tailed Student’s t-test for d, g, i, j, l, and m. ns=not significant. Scale bars=100μm (f, g, and k-m).

Source data

Extended Data Fig. 3 Zbtb46 KO hematopoietic system is similar to wild-type in homeostasis but more immunosuppressive in the tumor and ZBTB46 sustains DC lineage generation while suppressing myeloid lineages in the tumor context.

a, 1969 regressive sarcoma growth in wild-type (n = 5), VEC-cre Zbtb46 KO (n = 5), CD11c-cre Zbtb46 KO (n = 6), and Zbtb46 KO (n = 4) mice. b, Hemavet and FACS analysis of PB, BM, and spleen in the wild-type and Zbtb46 KO mice in healthy condition (n = 3). c, MDSCs (CD11b + Gr1+) in the PB of the tumor-bearing mice in wild-type and Zbtb46 KO mice (n = 3). d, MDSC generation from wild-type and Zbtb46 KO mice BM (n = 3). Created with BioRender.com. e, Gr1+ and MHCII+ cell generation from BM-sorted CMPs and GMPs of wild-type or Zbtb46 KO mice (n = 4). f, Gr1+ and MHCII+ cell generation from wild-type BM-sorted KSL, CMPs, and GMPs with empty vector-mCherry (WT) or Zbtb46-mCherry (ZOE) overexpression (n = 3). g, Genomic snapshots depicting the ZBTB46 binding regions at the indicated genomic loci. h, Cebpb expression in BM cells of wild-type or Zbtb46 KO mice with empty vector (EV) or Zbtb46 (ZOE) lentiviral overexpression (n = 3). i, Zbtb46 and Cebpb expression in BM cells of wild-type or Zbtb46 KO mice with empty vector (EV), or Zbtb46 (ZOE), or Cebpb shRNA constructs (CKD), or Cebpb (COE) lentiviral overexpression (n = 3). j, Consensus motif for ZBTB46 and CEBPB ChIP sequences. k, Genomic snapshots depicting the CEBPB binding regions at the indicated genomic loci. l, Schematics of reporter lentivector core expression cassette for CEBP signaling pathway. Created with BioRender.com. m, Chemiluminescence measurement of SEAP activity in the reporter-only (control), or reporter with Cebpb overexpressed (COE), or reporter with Cebpb and Zbtb46 overexpressed (COE + ZOE) assay system (n = 4). n, Analysis of a few DC and macrophage signature genes in BM cells of 1956 sarcoma-bearing wild-type and Zbtb46 KO mice with empty vector (EV) or Zbtb46 (ZOE) lentiviral overexpression (n = 3). Data are mean±SD. P-values were determined using two-tailed Student’s t-test for b-f and One-way ANOVA with Dunnett’s test for h, i, m, and n. ns=not significant.

Source data

Extended Data Fig. 4 Lenti-Zbtb46 treatment remodels tumor infiltrating lymphocytes.

a, tSNE plot from merged scRNAseq data of exclusively intratumoral lymphocytes. b, tSNE plots of lymphocytes showing select marker-gene expression. c, Violin plots displaying expression levels of select genes in CD8T cell clusters. d, Percentages of cells in CD4 and T_act clusters across different treatment. e, Violin plots displaying expression levels of select genes in CD4T cell cluster between control and treatment group. f, Heatmap of GSEA identifying pathway enrichment by T cell clusters. g, Violin plots displaying expression levels of select genes in NK cell clusters. h, Percentages of cells in NK_s3-5 clusters across different treatment. i, Heatmap of GSEA identifying pathway enrichment by NK cell clusters.

Extended Data Fig. 5 Lenti-Zbtb46 treatment remodels intratumoral macrophage/monocytes.

a, Violin plots displaying Cx3cr1 and Nos2 expression levels in the macrophage/monocyte population. b, Heatmap of GSEA identifying pathway enrichment in the macrophage/monocyte population by treatment. c, tSNE plot from merged scRNAseq data of exclusively intratumoral macrophages/monocytes. d, Violin plots displaying expression levels of select genes in macrophage/monocyte clusters. e Percentages of cells in Mac_s2-s6 clusters across treatment. f, Heatmap of GSEA identifying pathway enrichment by macrophages/monocytes clusters. g, Violin plots displaying expression levels of select genes in Mac_s2 and Mac_s4 clusters between control and treatment group.

Extended Data Fig. 6 Lenti-Zbtb46 treatment remodels intratumoral dendritic cell population.

a, tSNE plot from merged scRNAseq data of exclusively intratumoral dendritic cells (DC). b, Heatmap of GSEA identifying pathway enrichment by DC clusters. Heatmap displaying normalized expression of select genes in each DC cluster. c, Percentages of cells in DC_s1-s4 clusters across different treatment. d, tSNE plots highlighting H2-Ab1, Itgax, and Xcr1 expressing cells in the macrophage/monocyte population. Heatmap of GSEA identifying pathway enrichment by DC clusters. e, Violin plots displaying expression levels of select genes in DC_s1-s3 clusters between control and treatment group.

Extended Data Fig. 7 Lenti-Zbtb46 treatment remodels intratumoral neutrophil cell population.

a, tSNE plot from merged scRNAseq data of exclusively intratumoral neutrophils. b, Percentages of cells in Neu_s1-s3 clusters across different treatment. c, Heatmap displaying normalized expression of select genes in each neutrophil cluster. d, Heatmap of GSEA identifying pathway enrichment by neutrophil clusters. e, Ratio of the frequencies of neutrophil clusters N_s2 over (N_s1+N_s3). f, Heatmap of GSEA identifying pathway enrichment in the total intratumoral neutrophil population by Zbtb46 treatment. g, Percentage of mast cells in the tumor microenvironment across different treatment. h, Heatmap of GSEA identifying pathway enrichment in the mast cell population by treatment.

Extended Data Fig. 8 Lenti-Zbtb46 treatment reshapes the landscape of intratumoral stromal cell population.

a, tSNE plot from merged scRNAseq data of exclusively intratumoral stromal cells. b, Heatmap displaying normalized expression of select genes in each stromal cluster. c, Heatmap of GSEA identifying pathway enrichment in the endothelial cell population (Strm_c1 cluster) by treatment. d, Heatmap of GSEA identifying pathway enrichment by remaining stromal clusters. e, Percentages of cells in different stromal clusters across treatment. f, Violin plots displaying expression levels of select genes in Strm_s2-s5 (fibroblasts) cell clusters between control and treatment groups.

Extended Data Fig. 9 Systemic Zbtb46 mRNA nanoparticle treatment restricts tumor growth and enhances outcomes of anti-PD1 immunotherapy.

a-f, Tumor growth kinetic (a, d; n = 7 for control and 8 for ZmR in a; n = 8/group in d), Zbtb46 expression (b, e; n = 3 for control and 4 for ZmR), and immune microenvironment (c, f; n = 3 for control and 4 for ZmR) of 1956 sarcoma (a-c) and PyMT-BO1 breast cancer (d-f) in wild-type mice with control (EGFP mRNA nanoparticle) and Zbtb46 mRNA nanoparticle (ZmR) treatment. g, Growth of 1956 sarcoma cells co-transplanted with parental endothelial cells (WTEC) or Zbtb46 overexpressed endothelial cells (ZOEEC) with IgG or anti-PD1 treatment (n = 6 for WTEC+IgG, 7 for WTEC+Anti-PD1, 6 for ZOEEC+IgG, and 8 for ZOEEC+Anti-PD1). CR= Complete Remission. h-j, Representative images and quantification for (h) tumoral CD31+ vessels (n = 15 for control, 10 for Anti-PD1, 11 for ZmR, and 12 for Anti-PD1+ZmR), (i) pericyte coverage as measured by the NG2+ vascular area (n = 5 for control and 4 for ZmR), and (j) Gr1+ cells (n = 3), respectively, in 1956 sarcoma of wild-type mice with Zbtb46 mRNA nanoparticle (ZmR) or control (EGFP mRNA nanoparticle + IgG) treatment. Data are mean±SD. P-values were determined using two-tailed Student’s t-test for a-f, i, and j and One-way ANOVA with Dunnett’s test for g and h. ns=not significant.

Source data

Extended Data Fig. 10 Tumor-derived factors suppress Zbtb46 expression.

a-b, Zbtb46 expression in (a) MCEC cells (n = 5 (left); n = 3 for PBS and H2O2 and 4 for the rest) and (b) BM-derived DC (BMDC) (n = 10 for PBS and PGE2 and 12 for VEGF and RA) with indicated treatments for 24 hours. c, Gr1+ and MHCII+ cell generation from wild-type BM cells with Control (PBS), or RA, or PGE2 as indicated (n = 3). Created with BioRender.com. d, Schematics depicting treatment plan for tumor-bearing mice. Created with BioRender.com. e-i, Tumor growth kinetic (e, h; n = 6 for PBS, 7 for BMS493, and 8 for NS398 and NAC-APO in e; n = 6 for PBS and BMS493 and 8 for NS398 and NAC-APO in h), Zbtb46 expression (f, i; n = 3 for tumor-EC and tumor-DC and 5 for total-BM in f; n = 3 in i), and FACS analysis of BM (g, n = 5) of 1956 sarcoma (e-g) and PyMT-BO1 breast cancer (h-i) in wild-type mice with BMS493 (inverse panretinoic acid receptor agonist), NS398 (selective cyclooxygenase-2 inhibitor), and NAC + APO (ROS scavengers) treatment. Data are mean±SD. P-values were determined using two-tailed Student’s t-test for a(left), e, f, h, and i and One-way ANOVA with Dunnett’s test for a(right)-c, f(right), and g. ns=not significant.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Reporting Summary

Peer Review File

Supplementary Data 1

Statistical source data for Supplementary Fig. 5.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Extended Data Fig. 1

Statistical source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Statistical source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Statistical source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 9

Statistical source data for Extended Data Fig. 9.

Source Data Extended Data Fig. 10

Statistical source data for Extended Data Fig. 10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, A.U., Zeng, C., Subramanian, M. et al. ZBTB46 coordinates angiogenesis and immunity to control tumor outcome. Nat Immunol 25, 1546–1554 (2024). https://doi.org/10.1038/s41590-024-01936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-024-01936-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer