Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke

Abstract

Cerebral ischemia triggers a powerful inflammatory reaction involving peripheral leukocytes and brain resident cells that contribute to both tissue injury and repair. However, their dynamics and diversity remain poorly understood. To address these limitations, we performed a single-cell transcriptomic study of brain and blood cells 2 or 14 days after ischemic stroke in mice. We observed a strong divergence of post-ischemic microglia, monocyte-derived macrophages and neutrophils over time, while endothelial cells and brain-associated macrophages showed altered transcriptomic signatures at 2 days poststroke. Trajectory inference predicted the in situ trans-differentiation of macrophages from blood monocytes into day 2 and day 14 phenotypes, while neutrophils were projected to be continuously de novo recruited from the blood. Brain single-cell transcriptomes from both female and male aged mice were similar to that of young male mice, but aged and young brains differed in their immune cell composition. Although blood leukocyte analysis also revealed altered transcriptomes after stroke, brain-infiltrating leukocytes displayed higher transcriptomic divergence than their circulating counterparts, indicating that phenotypic diversification occurs within the brain in the early and recovery phases of ischemic stroke. A portal (https://anratherlab.shinyapps.io/strokevis/) is provided to allow user-friendly access to our data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microglia show altered transcriptional states through the acute and subacute phases of stroke.
Fig. 2: Transcriptional changes of BAMs after stroke.
Fig. 3: Inflammatory blood monocytes give rise to infiltrating brain MdCs after stroke.
Fig. 4: EC transcriptional changes and Igf1r signaling after stroke.
Fig. 5: Granulocyte transcriptional changes through ischemia–reperfusion.
Fig. 6: Comparison of the cellular composition and transcriptome signatures of brain and blood cells in aged and young stroke mice.
Fig. 7: Comparison of post-stroke transcriptomic profiles between mouse and human blood leukocytes by KEGG pathway analysis.

Similar content being viewed by others

Data availability

The raw and processed data and metadata of all scRNA-seq datasets included in this study are available in the GEO repository (GSE225948). A publicly accessible interactive web portal for exploring the scRNA-seq data included in this study has been developed (https://anratherlab.shinyapps.io/strokevis/). Source data are provided with this paper.

Code availability

Code that supports the findings of this study are available from the corresponding author upon request.

References

  1. Iadecola, C., Buckwalter, M. S. & Anrather, J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 130, 2777–2788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pedragosa, J. et al. CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. J. Cereb. Blood Flow. Metab. 40, S98–S116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cuartero, M. I. et al. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 44, 3498–3508 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Qiu, M. et al. Cell heterogeneity uncovered by single-cell RNA sequencing offers potential therapeutic targets for ischemic stroke. Aging Dis. 13, 1436–1454 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beuker, C. et al. Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nat. Commun. 13, 945 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Zheng, J. et al. Single-cell RNA-seq analysis reveals compartment-specific heterogeneity and plasticity of microglia. iScience 24, 102186 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Nakahashi-Oda, C. et al. CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke. Sci. Immunol. 6, eabe7915 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, S. et al. The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol. 54, 102347 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, X. et al. Single-cell transcriptomic analysis of the immune cell landscape in the aged mouse brain after ischemic stroke. J. Neuroinflammation 19, 83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gelderblom, M. et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40, 1849–1857 (2009).

    Article  PubMed  Google Scholar 

  12. Garcia-Bonilla, L., Iadecola, C. & Anrather, J. Cerebral ischemia and inflammation. In Stroke 7th Edition Pathophysiology, Diagnosis, and Management (Eds. Grotta, G. W. et al.) 117–128.e5 (Elsevier, 2021).

  13. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    Article  PubMed  Google Scholar 

  14. Zheng, K. et al. Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J. Cereb. Blood Flow. Metab. 42, 56–73 (2022).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  15. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Venkatraman, A. et al. Galectin-3: an emerging biomarker in stroke and cerebrovascular diseases. Eur. J. Neurol. 25, 238–246 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silvin, A. et al. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 55, 1448–1465.e46 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Zanier, E. R., Fumagalli, S., Perego, C., Pischiutta, F. & De Simoni, M. G. Shape descriptors of the ‘never resting’ microglia in three different acute brain injury models in mice. Intensive Care Med. Exp. 3, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Viengkhou, B. & Hofer, M. J. Breaking down the cellular responses to type I interferon neurotoxicity in the brain. Front Immunol. 14, 1110593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thored, P. et al. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57, 835–849 (2009).

    Article  PubMed  Google Scholar 

  24. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article  PubMed  Google Scholar 

  25. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miedema, A. et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol. Commun. 10, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamaguchi, A. et al. Temporal expression profiling of DAMPs-related genes revealed the biphasic post-ischemic inflammation in the experimental stroke model. Mol. Brain 13, 57 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcovecchio, P. M. et al. Scavenger receptor CD36 directs nonclassical monocyte patrolling along the endothelium during early atherogenesis. Arterioscler Thromb. Vasc. Biol. 37, 2043–2052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amorim, A. et al. IFNγ and GM-CSF control complementary differentiation programs in the monocyte-to-phagocyte transition during neuroinflammation. Nat. Immunol. 23, 217–228 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Williams, J. W. et al. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat. Immunol. 21, 1194–1204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rizzo, G. et al. Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction. Cardiovasc. Res. 119, 772–785 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Gliem, M. et al. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 63, 2198–2207 (2015).

    Article  PubMed  Google Scholar 

  35. Nakano, Y. et al. Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel neuroprotective factor in cerebral ischemia–reperfusion injury. Neuroscience 277, 123–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Cai, W. et al. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4, e131355 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Meng, H. et al. LRG1 promotes angiogenesis through upregulating the TGF‑beta1 pathway in ischemic rat brain. Mol. Med. Rep. 14, 5535–5543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Minten, C. et al. DARC shuttles inflammatory chemokines across the blood–brain barrier during autoimmune central nervous system inflammation. Brain 137, 1454–1469 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, G. et al. Neutralization of lipocalin-2 diminishes stroke–reperfusion injury. Int. J. Mol. Sci. 21, 6253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhuang, X., Cross, D., Heath, V. L. & Bicknell, R. Shear stress, tip cells and regulators of endothelial migration. Biochem. Soc. Trans. 39, 1571–1575 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Madureira, P. A. et al. The role of the annexin A2 heterotetramer in vascular fibrinolysis. Blood 118, 4789–4797 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Hongu, T. et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. Nat. Cancer 3, 486–504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rohlenova, K. et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab. 31, 862–877.e14 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Matsuoka, R. L., Buck, L. D., Vajrala, K. P., Quick, R. E. & Card, O. A. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell. Mol. Life Sci. 79, 372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Androvic, P. et al. Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell Rep. 31, 107777 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, W. et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 17, 47 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grieshaber-Bouyer, R. et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12, 2856 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Turk, V. et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824, 68–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, H. K. et al. Neuroprotective and anti-inflammatory effects of a dodecamer peptide harboring Ninjurin 1 cell adhesion motif in the postischemic brain. Mol. Neurobiol. 55, 6094–6111 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Durai, V. et al. Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nat. Immunol. 20, 1161–1173 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, H. et al. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. Immunity 51, 696–708.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, J. Y. et al. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity 42, 252–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cai, W. Neuroprotection against ischemic stroke requires a specific class of early responder T cells in mice. J Clin. Invest. 132, e157678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γαT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bjorkstrom, N. K., Strunz, B. & Ljunggren, H. G. Natural killer cells in antiviral immunity. Nat. Rev. Immunol. 22, 112–123 (2022).

    Article  PubMed  Google Scholar 

  59. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ritzel, R. M. et al. Aging alters the immunological response to ischemic stroke. Acta Neuropathol. 136, 89–110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ritzel, R. M. et al. Age-associated resident memory CD8 T cells in the central nervous system are primed to potentiate inflammation after ischemic brain injury. J. Immunol. 196, 3318–3330 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Inacio, A. R. et al. Endogenous IFN-β signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. J. Neuroinflammation 12, 211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Han, R. et al. Differential expression and correlation analysis of global transcriptome for hemorrhagic transformation after acute ischemic stroke. Front. Neurosci. 16, 889689 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Huang, Y. et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat. Neurosci. 21, 530–540 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Garcia-Bonilla, L. et al. Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. J. Neuroinflammation 13, 285 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Miro-Mur, F. et al. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav. Immun. 53, 18–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Kilkenny, C. et al. Animal research: reporting in vivo experiments—the ARRIVE guidelines. J. Cereb. Blood Flow. Metab. 31, 991–993 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J. Physiol. 598, 3793–3801 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Jackman, K., Kunz, A. & Iadecola, C. Modeling focal cerebral ischemia in vivo. Methods Mol. Biol. 793, 195–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Soltoff, S. P., McMillian, M. K. & Talamo, B. R. Coomassie Brilliant Blue G is a more potent antagonist of P2 purinergic responses than Reactive Blue 2 (Cibacron Blue 3GA) in rat parotid acinar cells. Biochem. Biophys. Res. Commun. 165, 1279–1285 (1989).

    Article  CAS  PubMed  Google Scholar 

  74. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Campbell, J., Yang, S., Wang, Z., Corbett, S. & Koga, Y. celda: CEllular Latent Dirichlet Allocation https://bioconductor.org/packages/celda (2022).

  80. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article  CAS  Google Scholar 

  84. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Heng, T. S. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 13, 206 (2019).

    Google Scholar 

  88. Tabula Muris, C. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  ADS  Google Scholar 

  89. Neumann, J. et al. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J. Neurosci. 28, 5965–5975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  95. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Kim, H. et al. Development of a validated interferon score using NanoString technology. J. Interferon Cytokine Res. 38, 171–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Wickham, H. ggplot2: elegant graphics for data analysis (Springer-Verlag, 2016).

    Book  Google Scholar 

  99. Wei, T. & Simko, V. R package ‘corrplot’: visualization of a correlation matrix https://github.com/taiyun/corrplot (2021).

  100. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Ulgen, E., Ozisik, O. & Sezerman, O. U. pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front. Genet. 10, 858 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Monaco, G. et al. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 26, 1627–1640.e27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Larsson, J. & Gustafsson, P. A case study in fitting area-proportional Euler diagrams with ellipses using eulerr. In CEUR Workshop Proceedings (Eds. Sato, Y., & Shams, Z.) 84–91 (2018).

  106. Gu, Z. & Hubschmann, D. simplifyEnrichment: a Bioconductor package for clustering and visualizing functional enrichment results. Genomics Proteom. Bioinforma. 21, 190–202 (2023).

    Article  Google Scholar 

  107. Sayols, S. rrvgo: a Bioconductor package to reduce and visualize Gene Ontology terms https://bioconductor.org/packages/release/bioc/html/rrvgo.html (2020).

  108. Stevens, S. L. et al. Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J. Neurosci. 31, 8456–8463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, Z. et al. Inference of immune cell composition on the expression profiles of mouse tissue. Sci. Rep. 7, 40508 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Garcia-Bonilla, L. et al. Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation. Brain Behav. Immun. 95, 489–501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kassambara, A. rstatix: pipe-friendly framework for basic statistical tests https://CRAN.R-project.org/package=rstatix (2021).

Download references

Acknowledgements

This work was supported by NIH grants R01NS081179 (J.A.), R01NS34179 (C.I.), the Leducq Foundation (StrokeIMPaCT Network; J.A.) and the Sackler Brain and Spine Institute Research Grant (L.G.B.). We thank C. Mason for helpful discussions. The generous support of the Feil Family Foundation is gratefully acknowledged. All libraries were sequenced at the Genomics Core of the Cornell Institute of Biotechnology (RRID: SCR_021727).

Author information

Authors and Affiliations

Authors

Contributions

J.A. and L.G.B. conceived the study with input from C.I. L.G.B., Z.S., R.S., O.N. and G.R. performed experiments and analyzed data. J.A. performed bioinformatic analyses. L.G.B. and J.A. wrote the original draft; C.I. revised the manuscript; all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lidia Garcia-Bonilla or Josef Anrather.

Ethics declarations

Competing interests

C.I. serves on the scientific advisory board of Broadview Ventures. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Louise McCullough and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. S. Houston was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Single-cell transcriptomic profiling of mouse brain and blood cells after transient focal cerebral ischemia.

a, Schematic representation of Drop-Seq scRNA-seq pipeline used to analyze brain and blood cells isolated from either control surgery (Sham) or stroke mice 2 and 14 days (D02, D14) after injury. Brain cells were dissociated by enzymatic digestion with papain. Infiltrating leukocytes (CD45hi), microglia (Mg) and endothelial cells (EC) were isolated by flow cytometry sorting. Blood leukocytes were purified after erythrocyte removal. Brain and blood single cell suspensions were subjected to Drop-Seq, sequencing and analysis. b, c, Left: UMAP plot representing color-coded cell clusters identified in merged brain (b) or blood (c) single-cell transcriptomes; Middle: UMAP of 3 color-coded time point overlay of brain (b) or blood (c) single-cell transcriptomes; Right: bar graph showing relative frequencies of each cell type across Sham, D02 and D14 groups of either brain (b) or blood (c) identified cell type clusters. d, Left: UMAP plot of the combined brain (Br) and blood (PB) dataset showing cell clustering similarities between brain and blood Gran, Tc, Bc and brain myeloid cells (BAM, MdC, DC) with blood monocytes (left). Right: Same UMAP plot annotated by tissue. Border-associated macrophages (BAM), monocyte-derived cells (MdC), granulocytes (Gran), mast cells (MaC), dendritic cells (DC), T cells (Tc), NK cells (NK), B cells (Bc), vascular mural cells (MC), epithelial-like cells (Epi), oligodendrocytes (OD); Eosinophils-Basophils (EosBas); Monocytes (Mo); hematopoietic precursors (pre); unclassified (UC).

Extended Data Fig. 2 Histological validation of microglia marker genes (related to Fig. 1).

a, left: Representative immunofluorescence (IF) image of a whole brain section from a Cx3cr1CreERT2:R26Tdomato mouse subjected to 2 days of MCAo (D02) showing the distribution of Ki67+ cells (white, binary mask) and nuclear DAPI staining (blue); middle and right panels: IF images of magnified areas showing Ki67 expression by Td+(red) Iba1+(green) microglia in the peri-infarct area. Arrowheads indicate Ki67 staining. The border of the ischemic lesion is indicated by yellow dash outline and was traced based on DAPI, Iba1 and Tomato labels. b, top: RNAscope fluorescence in situ hybridization (FISH) validating Cst7 (white) expression in D02 Td+ microglia (red). Left: Representative whole brain section image of Cst7 expression (binary mask) and nuclear DAPI staining; Middle and right panels: FISH-IF images of magnified areas showing upregulation of Cst7 in microglial cells surrounding the ischemic lesion. Bottom: FISH-IF images validating Cst7 (white) expression in D14 mice. Left: Representative whole brain section image of Cst7 expression (binary mask) and nuclear DAPI staining; Middle and right top panels: FISH-IF images of magnified areas showing upregulation of Cst7 in microglia (Iba1+, green) surrounding the ischemic lesion. c, FISH-IF images validating Cxcl10 (white) expression in Cx3cr1-Td+ mice 2 and 14 days after MCAo. Left (D02): Representative whole brain section image of Cxcl10 expression (binary mask) and images of magnified areas showing localization of Cxcl10 in microglial cells (Td+, red) outside of the ischemic lesion. Right (D14): Representative whole brain section image of Cxcl10 expression (binary mask) and images of magnified areas showing localization of Cxcl10 in microglial cells (Td+, red) on the border of the ischemic lesion. d, IF images validating IGF1 (white) expression by Cx3cr1-Td+(red) MHCII(green) microglia 14 days after MCAo in the ischemic region.

Extended Data Fig. 3 Cellular composition and transcriptomics of brain dendritic cells.

a, UMAP plots of brain dendritic cells (DC) transcriptomes for each studied time point identifies 9 clusters (DC1-9). b, Bar graph showing relative frequencies of DC clusters across Sham, D02 and D14 groups. c, UMAP of 3 color-coded time point overlay of brain DC. Classification of clusters into DC subtypes is based on marker gene expression (d,f): cDC1 (Xcr1, Clec9a), cDC2 (Cd209a, Sirpa), monocyte derived-DC (moDC; Sirpa, Ms4a7), migratory (migDC; Ccr7), and plasmacytoid DC (pDC; Ly6d, Ccr9). d, UMAP plots displaying expression of marker genes for each identified DC cluster in the brain. Scale bars represent log of normalized gene expression. e, Heatmap displaying differential expression of the top 10 upregulated genes in each DC cluster. Scale bar represents Z-score of average gene expression (log). f, Flow cytometry analysis validating brain cDC1 (XCR1+), cDC2 (CD172a+) and migDC (CCR7+) subtypes identified by scRNA-seq after stroke. g, Left: FISH of Cd209a (red) expression in the brain, combined with IF for Iba1 (green) and nuclear staining with DAPI (blue), showing Cd209a+Iba1+ cells around blood vessel (dotted line). Cx: cortex; St: striatum. Right: Flow cytometry analysis showing double positive CD209a+CD172a+ DC (CD11c+MHCII+).

Extended Data Fig. 4 Cellular composition and transcriptomics of brain lymphoid cells.

a, UMAP plots of brain lymphoid cells (Tc) transcriptomes for each studied time point identifies 7 clusters (Tc1-7). b, Bar graph showing relative frequencies of Tc clusters across Sham, D02 and D14 groups. c, Heatmap displaying expression of the top 10 upregulated genes in each Tc cluster. Scale bar represents Z-score of average gene expression (log). d, UMAP of merged Sham, D02 and D14 Tc transcriptomes. Classification of clusters into T cell types is based on marker gene expression (c,e): CD4 (Cd3d,Cd4), Treg (Cd3d,Cd4,Foxp3), CD8 (Cd3d, CD8b1), NKT (Cd3d, Gzma), γδT (Cd3d, Trdc), interferon stimulated T cells (ISG; Cd3d, Ifit3), innate lymphoid cells type 2 (ILC2; Gata3, Hes1) and proliferating T cells (prol; Cd3d, Top2a). e, Density plots in the UMAP space showing the expression of selected marker genes used for lymphoid cell type identification. Scale bars represent densities based on kernel density estimation of gene expression using. f, Chord plot showing cell-cell interactions between Cxcr3 and Cxcl10 in grouped Sham, D02 and D14 stroke mice. The strength of the interaction is indicated by the edge thickness. The color of the chord matches the cell cluster color sending the signal (Cxcl10). The number of cell recipient clusters (Cxcr3) and their weight in the interactions is indicated by the color-matched stacked bar next to each sender.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15.

Reporting Summary

Peer Review File

Supplementary Table 1

Kegg analysis.

Supplementary Table 2

Reagents.

Supplementary Table 3

Mouse census and Drop-seq sample-specific information.

Supplementary Table 4

Brain cell number downsample.

Supplementary Table 5

Module score gene list.

Supplementary Table 6

Statistical source data for Supplementary Figs. 5c, 6b, 7 and 14.

Source data

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Bonilla, L., Shahanoor, Z., Sciortino, R. et al. Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. Nat Immunol 25, 357–370 (2024). https://doi.org/10.1038/s41590-023-01711-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01711-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing