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Genetics of circulating inflammatory 
proteins identifies drivers of immune- 
mediated disease risk and therapeutic 
targets

Circulating proteins have important functions in inflammation and a broad 
range of diseases. To identify genetic influences on inflammation-related 
proteins, we conducted a genome-wide protein quantitative trait locus 
(pQTL) study of 91 plasma proteins measured using the Olink Target 
platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). 
Integration of pQTL data with eQTL and disease genome-wide association 
studies provided insight into pathogenesis, implicating lymphotoxin-α in 
multiple sclerosis. Using Mendelian randomization (MR) to assess causality 
in disease etiology, we identified both shared and distinct effects of specific 
proteins across immune-mediated diseases, including directionally 
discordant effects of CD40 on risk of rheumatoid arthritis versus multiple 
sclerosis and inflammatory bowel disease. MR implicated CXCL5 in 
the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 
transcript expression in patients with UC. These results identify targets of 
existing drugs and provide a powerful resource to facilitate future drug 
target prioritization.

Inflammation is a physiological host response to infection or injury. 
However, aberrant inflammatory responses result in tissue damage 
and are central to the pathogenesis of multiple diseases, including 
sepsis, autoimmunity and atherothrombosis. Inflammatory responses 
are orchestrated by a complex network of cells and mediators, includ-
ing circulating proteins such as cytokines and soluble receptors. 
Therefore, discovery of the genetic determinants of the abundance 
of inflammation-related circulating proteins should yield valu-
able insights into both physiology and the etiology of a broad range  
of diseases.

Proteomic studies are informative because proteins are the effec-
tor molecules of most biological processes and, from a translational 
perspective, proteins are the targets of most drugs. The development 
of high-throughput proteomic technologies now allows for profil-
ing of the plasma proteome on an epidemiological scale. Coupling 
genomic and proteomic data enables identification of genetic variants 

associated with protein abundance, pQTLs. pQTLs provide valuable 
insights into the molecular basis of complex traits and diseases by 
identifying proteins that lie between genotype and phenotype. Recent 
years have seen a rapid increase in both the number and the size of pQTL 
studies, transforming our understanding of the genetic architecture 
of the circulating proteome1–11.

In the present study, we extend previous work by performing pQTL 
mapping for 91 inflammation-related proteins in 14,824 participants. 
We integrate these data with disease genome-wide association studies 
(GWASs) to characterize the functional effects of disease-associated 
variants. Using MR and colocalization analyses, we identified pro-
teins that play a causal role in immune-mediated disease etiology. Our 
results revealed pathways that are known to be therapeutically impor-
tant and new putative drug targets, including CD40 in rheumatoid 
arthritis, lymphotoxin-α (LTA) in multiple sclerosis and the chemokine  
CXCL5 in UC.
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protein-altering variant (all missense). Of these, seven were variants in 
the gene encoding the target protein itself and three in another nearby 
gene (Supplementary Note 3). PAVs can result in false-positive cis-pQTL 
signals by altering protein epitopes recognized by antibodies used 
in proteomic assays13. However, they can also impact the abundance 
of plasma proteins through several mechanisms, including protein 
translation, secretion into the circulation, enzymatic cleavage of 
pre-proteins and protein clearance and degradation. Alternatively, 
plasma protein abundance can also be affected by altered transcrip-
tional regulation in blood cells or other tissues.

We next examined the degree to which the 59 cis-pQTLs were 
explained by corresponding cis-expression (e)QTLs, by comparing 
our findings with publicly available cis-eQTL data. In a meta-analysis 
of whole-blood eQTL data from the eQTLGen Consortium14, we found a 
genome-wide significant (P ≤ 5 × 10−8; meta-analysis) cis-eQTL for 40 of 
the 59 cis-pQTLs, where the cis-eQTL target gene encodes the cis-pQTL 
target protein. However, statistical colocalization analyses showed 
that only 6 (rs34790908-TNFSF12, rs72912115-TGFA, rs471994-MMP1, 
rs674379-CD5, rs450373-CXCL5 and rs5744249-IL18) of these cis-eQTLs 
colocalized (posterior probability (PP) ≥ 0.8) with their cognate 
cis-pQTLs (Supplementary Table 6), indicating that the remaining 34 
eQTL–pQTL pairs may not share the same underlying causal genetic 
variant. Examination of regional association plots confirmed that 
most blood eQTL and pQTL signals were distinct (Supplementary  
Fig. 3). Of the six colocalizing eQTL–pQTL pairs, five were directionally 
consistent. However, the eQTL and pQTL for IL18 at rs5744249 were 
oppositely associated with the messenger RNA and protein levels. 
rs5744249 resides in intron 2 of IL18 and is in high LD with a 3′-UTR vari-
ant (rs5744292, r2 = 0.98, 1000 Genomes EUR), but no PAVs. Therefore, 
the directional discordance is not easily explained either by an arte-
factual pQTL signal due to altered antibody binding or by a difference 
in the release of IL-18 into the circulation due to differences in protein 
structure, but may instead relate to differential post-transcriptional 
regulatory mechanisms or contributions of different cell types to the 
plasma pQTL versus whole-blood eQTL. Indeed, directional uncou-
pling of eQTL–pQTL pairs has been previously reported8 and eQTL 
directional discordance has been observed between different tissues15 
or even within different leukocytes16.

As tissues other than blood are the primary source of many plasma 
proteins, we explored eQTL data across a range of tissues and cell types 
from the Genotype Tissue Expression (GTEx) (v.8) project15 and the 
eQTL Catalogue17. Systematic colocalization analyses revealed colocal-
izing (PP ≥ 0.8) cis-eQTLs in at least one tissue or cell type for 32 of the 
59 cis-pQTLs (Supplementary Tables 7 and 8): 16 were highlighted by 
both eQTL resources, 12 by GTEx only and the remaining 4 by the eQTL 
Catalogue only. These included all six colocalizing cis-eQTLs from 
eQTLGen. These findings suggest that at least 50% of the cis-pQTLs 
identified in our study may be driven by underlying cognate cis-eQTLs. 
In most cases, colocalization (PP ≥ 0.8) between cis-eQTL and pQTL 
pairs was observed across two or more distinct tissues or cell types, up 
to a maximum of 41 (for rs1883832-CD40). In other cases, colocaliza-
tion was observed in just a single tissue or cell type (for example, the 
colocalizing cis-eQTL signal at rs62360376 for GDNF was found only in 
skeletal muscle). Of the 27 cis-pQTLs without a corresponding colocal-
izing cis-eQTL, for 12 the sentinel variant or a proxy in high LD was a PAV 
(see Supplementary Note Table 3).

Identifying the mediators of trans-pQTLs
We sought to identify the most likely gene mediators of the trans-pQTLs 
using the ProGeM bioinformatics tool18, which utilizes genomic (for 
example, cis-eQTL) and biological (for example, gene ontology (GO) and 
pathways) annotation data from multiple sources. For some trans-pQTLs, 
we identified strong evidence to implicate a gene encoded near the 
pQTL as mediating the distant association with the target protein. 
Examples included receptor–ligand pairs such as IL-6–IL-6R, IL-10–IL- 

Results
Genetic architecture of circulating inflammatory proteins
We performed genome-wide pQTL mapping for 91 plasma proteins 
measured using the Olink Target Inflammation panel in 11 cohorts total-
ing 14,824 European-ancestry participants (Supplementary Table 1 and 
Supplementary Note 1) and meta-analyzed the results (Extended Data 
Fig. 1). To provide a succinct and standardized nomenclature, we report 
proteins using the non-italicized symbols of the genes encoding them 
(see Supplementary Table 2 for a mapping of symbols to full protein 
names and UniProt identifiers). We identified a total of 180 significant 
(P ≤ 5 × 10−10, fixed-effect meta-analysis) associations between 108 
genomic regions (see Methods for locus definition) and 70 proteins 
(Fig. 1, Supplementary Table 3, Supplementary Item and Supplemen-
tary Figs. 1 and 2). Of the 180 significant locus–protein associations, 
59 (33%) were local acting (‘cis’ pQTLs; defined here as a genetic variant 
lying within ±1 Mb of the gene encoding the associated protein) and 121 
(67%) were distant acting (‘trans’). We found evidence of trans-pQTL 
hotspots associated with multiple proteins (for example, rs3184504 
at the SH2B3 locus was associated with CXCL9, CXCL10, CXCL11, CD5, 
CD244 and IL-12B) (Fig. 2a).

For 70 (77%) of the 91 proteins studied, we identified at least 1 
significant pQTL, including 59 (65%) proteins that had a cis-pQTL. Of 
these 70 proteins, 19 had only a cis-pQTL, 11 had only trans-pQTL(s) and 
40 had both cis- and trans-pQTLs. For 18 of the 21 proteins for which no 
pQTL was detected, >50% of samples had levels below the lower limit 
of detection (LLOD), suggesting that the lack of genetic signal is due to 
low protein abundance in plasma (Extended Data Fig. 2a). The number 
of genomic loci associated with each protein ranged between one and 
eight (Fig. 2b), but was fewer than four for most proteins. Examples 
of multi-locus-regulated proteins include IL-12B and TNFSF10, both 
of which had one cis- and seven trans-pQTLs (Fig. 2c,d). Conditional 
analyses revealed the presence of an additional 47 independent signals, 
raising the total number of pQTL signals from 180 (59 cis, 121 trans) to 
227 (99 cis, 128 trans) (Supplementary Table 4).

To validate our pQTL results, we tested significant associations 
from our discovery meta-analysis for replication in an independent 
cohort (ARISTOTLE) comprising 1,585 participants with Olink plasma 
proteomic data12. Of the 180 pQTL signals, we were able to test 174 
in the ARISTOTLE data, of which 168 had a directionally consistent 
effect estimate. There was a strong correlation (Pearson’s r = 0.97) 
between the pQTL effect estimates in ARISTOTLE and those in the dis-
covery meta-analysis; this correlation was consistent for both cis- and 
trans-pQTL effect sizes (r = 0.99 and r = 0.94, respectively) (Extended 
Data Fig. 3). Out of the 174 pQTL signals, 32 replicated at P ≤ 5 × 10−10 
(linear regression) and 72 at P ≤ 2.8 × 10−4 (a Bonferroni-corrected 
threshold), respectively (Supplementary Table 5). We also tested our 
significant pQTLs for replication in 35,556 Icelanders from the deCODE 
study9, which assayed plasma proteins using the aptamer-based SomaS-
can platform (Supplementary Note 2). Of the 91 proteins in our study, 
72 were measured in the deCODE study. Of the 158 locus–protein asso-
ciations that could be tested, 75 were significant at P ≤ 5 × 10−10 (linear 
regression) and 96 at P ≤ 2.8 × 10−4. Overall, we replicated 126 (71%) of 
the 178 testable pQTLs in either ARISTOTLE or deCODE at P ≤ 2.8 × 10−4 
(linear regression) (Supplementary Note Table 1).

In line with other GWASs, we observed an inverse relationship 
between effect size and minor allele frequency (MAF), with rarer pQTL 
variants generally showing larger effect sizes (Extended Data Fig. 4a). 
The proportion of variance explained by the significant sentinel vari-
ants from our discovery meta-analysis varied from 0.003 for NTF3 to 
0.285 for CCL8 (Extended Data Fig. 4b).

Annotation and characterization of cis-pQTLs
Of the 59 cis-pQTLs identified, 11 sentinel variants were protein-altering 
variants (PAVs) (10 missense and 1 splice acceptor). A further 10 sen-
tinel variants were in high linkage disequilibrium (LD; r2 > 0.8) with a 
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10RA, CCL2–CCR2, CCL4–CCR5 and CCL11–CCR3. We also identified  
genes mediating pQTLs through intracellular signaling pathways rather 
than direct ligand–receptor interactions. An example is rs385076, 
an intronic variant in NLRC4, which is a trans-pQTL for IL-18. IL-18 is 
synthesized as an inactive precursor (pro-IL-18), which is cleaved by 
caspase-1 in the NLRC4 inflammasome to produce the active form of 
IL-18 (Fig. 3a). As rs385076 is also a cis-eQTL for the inflammasome gene 
NLRC4 (Fig. 3b), together these QTL data suggest that genetic variation 

in NLRC4 alters its expression and thereby inflammasome activity, with 
consequent effects on circulating IL-18 levels.

Following a manual literature review to refine the ProGeM output, 
we narrowed down the most likely mediating gene(s) to either 1 or 2 
candidates for 100 of the 121 trans-pQTLs (Supplementary Table 9). 
For 94, 1 of the 3 nearest genes to the sentinel variant was the primary 
candidate. In several instances where either one or two candidate genes 
were prioritized, ProGeM revealed functional links between both (1) 
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the sentinel variant and the nearby candidate mediating gene (for 
example, cis-eQTL) and (2) the same candidate mediating gene and 
the trans-affected protein(s) (for example, through protein–protein 
interaction). We have previously shown that such convergence on the 
same gene is indicative of a strong candidate18. An example of this is the 
trans-pQTL at rs12075, which is associated with multiple chemokines  
(CCL2, CCL7, CCL8, CCL11, CCL13 and CXCL6) that attract and activate  
leukocytes. rs12075 is a missense variant and a cis-eQTL in whole blood 
for the DARC gene, which encodes the atypical chemokine receptor 1 
(ACKR1) protein. STRINGdb analysis revealed that ACKR1 is an interact-
ing partner for three (CCL2, CCL7 and CCL8) of the six trans-affected 
chemokines. Previous studies have shown that ACKR1 acts as a negative 
regulator of inflammation by nonspecifically binding both the CCL 
and the CXCL families of chemokines19, suggesting an explanation 
for the multiple chemokine associations at this variant. Potentially 
downstream of its effects on chemokines, rs12075 is also associated 
with white blood cell count, as well as monocyte and basophil count20 
(Extended Data Figs. 5 and 6).

We found that plasma levels of some proteins were associated 
with numerous genetic loci, with IL-12B, KITL and TNFSF10 regulated 
by seven genetic loci each. We hypothesized that the mediating genes 

at each of the regulatory loci for a given protein might be functionally 
related, enabling identification of shared pathways and/or the most 
likely mediating gene(s). We therefore generated protein–protein 
interaction networks for each of these multi-locus-regulated pro-
teins and their respective candidate mediating genes (Extended Data  
Fig. 7). For TNFSF10, the network analysis linked genetic regulators of 
TNFSF10 to the plasminogen-activating system (Extended Data Fig. 7a 
and Supplementary Note 4). For KITLG, a driver of hematopoiesis21, we 
found a cluster of interacting proteins, including PON1, ABCA1 and PLTP 
(Extended Data Fig. 7b) converging on cholesterol metabolism. Sup-
porting this, we found that five of the seven trans-pQTLs for KITLG were 
significantly (P ≤ 5 × 10−8, linear regression) associated with levels of 
either high-density lipoprotein- or low-density lipoprotein-cholesterol, 
and some with other lipids such as triglycerides and blood cell traits 
(Supplementary Table 10). These findings therefore suggest a link 
across plasma KITLG levels, cholesterol metabolism and altered 
hematopoiesis.

Overlap with GWASs of traits and diseases
GWASs have identified thousands of genomic regions associated with 
common diseases22, including immune-mediated diseases (IMDs). 
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Many of these disease-associated loci lie outside protein-coding 
regions, leaving the effector molecules and pathways by which these 
genetic variants confer disease risk unclear. Integration of pQTL and 
GWAS data can help bridge this knowledge gap by linking disease risk 
loci to specific proteins. To this end, we looked for overlap between 
pQTLs, or proxy variants in high LD (r2 ≥ 0.8) with our sentinel vari-
ants, and disease-associated variants from GWASs. This revealed an 
overlap between our pQTLs and disease-associated variants for 73 
diseases (Extended Data Fig. 8 and Supplementary Table 11). Exam-
ples of genetically anchored protein–disease connections included: 
TNFSF11 (RANKL) with osteoporosis and hypothyroidism, NGF (nerve 
growth factor) with migraine, TNFSF12 (TWEAK) with hypertension 
and fibroblast growth factor 5 (FGF5) with hypertension and cardio-
vascular diseases.

We next focused on IMDs in more detail, intersecting our pQTL 
data with IMD GWASs to identify proteins linking genotype and 
disease phenotypes. We found that 31 pQTLs overlap GWAS hits 
for at least 1 common IMD, with 76 unique pQTL protein–disease 
associations (Supplementary Table 12 and Extended Data Fig. 9). 
For example, we observed that a cis-pQTL for IL-10 was also associ-
ated with risk of inflammatory bowel disease (IBD), with the allele 
associated with higher plasma IL-10 correlating with reduced IBD 
risk, consistent with the anti-inflammatory effects of IL-10. Some 
pQTLs showed diverging directions of effect on different diseases; 
for example, the trans-pQTL at IL6R for plasma IL-6 levels described 
earlier had opposing directions of effect on risk of rheumatoid 
arthritis and allergic diseases (Extended Data Fig. 9), as previously  
described23,24.

31,500,000 32,000,000 32,500,000 33,000,000

Recom
bination rate

Recom
bination rate

0

20

40

60

0

100

50

150

200

Position on chromosome 2

−l
og

10
(P

)
−l

og
10

(P
)

rs385076

rs385076

XDH

MEMO1

DPY30

SPAST

SLC30A6

NLRC4

YIPF4

BIRC6

TTC27

LTBP1

0

25

50

75

100

0

25

50

75

100

r2 Miss 0−0.2 0.2−0.4 0.4−0.6 0.6−0.8 0.8−1.0

ba trans-pQTLfor IL-18 plasma protein

cis-eQTL for NLRC4 whole-blood mRNA 

Inflammasome

NLRC4

Caspase-1

Pro- IL-18

IL-18

IL-18

Nucleus

Extracellular space

Fig. 3 | Genetic regulation of the inflammasome affects plasma IL-18 levels. 
a, Schematic illustrating the cleavage of pro-IL-18 by caspase-1 and subsequent 
secretion of mature IL-18 from the cell into the extracellular space. b, Regional 
association plots around NLRC4 showing: the trans-pQTL signal for plasma 
IL-18 protein (top) from the present study (n = 14,824) and the cis-eQTL signal 

for NLRC4 (bottom) in whole blood from the eQTLGen study (n = 31,684)14. The 
purple diamond shows the sentinel pQTL variant. Other variants are colored 
by LD to the sentinel pQTL. Two-sided P values are from meta-analysis of linear 
regression estimates.

http://www.nature.com/natureimmunology


Nature Immunology | Volume 24 | September 2023 | 1540–1551 1545

Article https://doi.org/10.1038/s41590-023-01588-w

Trans-pQTL implicates the LTBR–LTA axis in multiple sclerosis 
etiology
We identified a trans-pQTL for LTA (also known as TNF-β) at rs2364485 
on chromosome 12 (Table 1), an intergenic variant previously found 
to be associated with multiple sclerosis25. We found that the multiple 
sclerosis risk allele, rs2364485:A, was associated with higher plasma 
levels of LTA. We next applied the ProGeM algorithm, which revealed 
two candidate genes in the region near the pQTL that might mediate 
the trans-pQTL: TNFRSF1A (encoding TNF receptor 1, TNFR1) and LTBR 
(encoding lymphotoxin β-receptor (LTBR)). LTA is a ligand for TNFR1, 
but can also bind the membrane-bound receptor LTBR when in com-
plex with LTB. Functional studies have shown that TNFRSF1A is the 
causal gene underlying a neighboring, independent multiple sclerosis 
association in the region, about 70 kb upstream from rs2364485. The 
sentinel variant at this neighboring signal, rs1800693, results in an 
alternative TNFRSF1A isoform due to skipping of exon 6 (ref. 26). We 
therefore sought to determine whether TNFRSF1A is also the prob-
able mediating gene for the LTA trans-pQTL at rs2364485, or whether 
LTBR is the more likely candidate. Through mining of eQTL databases, 
we found that rs2364485 is a cis-eQTL for LTBR (but not TNFRSF1A) in 
multiple tissues, including in the eQTLGen consortium meta-analysis 
of whole blood14, with the multiple sclerosis risk allele (rs2364485:A) 
associated with reduced LTBR mRNA. Pairwise statistical colocaliza-
tion analyses using conditioned LTBR eQTL data (from eQTLGen) and 
multiple sclerosis GWAS data25 (Methods) showed that the rs2364485 
trans-pQTL signal for LTA colocalizes with LTBR mRNA expression 
in both whole blood (PP = 0.79) and multiple sclerosis (PP = 0.86)  
(Fig. 4). Taken together, these data are consistent with a pathogenic 
model whereby the multiple sclerosis risk allele results in lower abun-
dance of LTBR (the receptor) and consequently higher circulating levels 
of the ligand LTA.

MR to identify protein drivers of IMDs
Observational studies comparing patients with IMDs with healthy con-
trols have identified many proteins that are dysregulated. However, it 
is often unclear whether such proteins play causal roles in the disease 
process or are merely downstream markers. Distinguishing these pos-
sibilities is important therapeutically, because pharmacological target-
ing of the latter is unlikely to be beneficial. We therefore applied MR, 
an approach that tests the causal role of a risk factor (‘exposure’) in a 
disease in observational data using genetic variants as instrumental 
variables27. We used the 58 proteins with cis-pQTLs outside the human 
leukocyte antigen region in our study as exposures and 14 IMDs as 
outcomes (Methods). By restricting our use of genetic instruments 
to cis-pQTLs, we reduced the likelihood of violating MR assumptions 
through horizontal pleiotropy. Using generalized summary-data-based 
MR (GSMR)28, we found 22 significant (false discovery rate (FDR) < 0.01) 
putative causal associations (Fig. 5 and Supplementary Table 13). To 
evaluate the robustness of these associations, we performed addi-
tional checks including evaluating the strength of the relevant disease 
association in the GWAS data and whether there might be confound-
ing due to LD (Methods and Supplementary Table 14). After applying 
these filters, ten disease–protein pairs with robust evidence remained  
(Table 1). These results highlighted a number of established links 
between proteins and inflammatory diseases that are supported by 
other lines of evidence. For example, our finding that genetic predispo-
sition to higher plasma levels of IL-12B (a subunit of IL-12) was associated 
with increased risk of IBD is consistent with the therapeutic benefit of 
ustekinumab (a monoclonal antibody targeting the p40 subunit com-
mon to IL-12 and IL-23) in IBD (Supplementary Table 15).

Our MR analysis implicated CXCL5, a chemokine that acts on 
neutrophils, in the etiology of UC. The plasma cis-pQTL for CXCL5 
colocalized with cis-eQTLs for CXCL5 in both blood and gut tissue and 
with the UC GWAS signal (Fig. 6a). To further explore the role of CXCL5 
in UC, we compared expression of CXCL5 transcripts in gut samples 

from patients with IBD and healthy controls using the IBD Transcrip-
tome and Metatranscriptome Meta-Analysis (IBD TaMMA) platform29. 
We observed that CXCL5 gene expression was significantly increased 
in mucosal biopsies from patients with UC compared with biopsies 
from healthy control participants (log2(fold-change) (log2(FC)) = 7.07, 
P = 1.98 × 10−174, Wald test) (Fig. 6b). Indeed, CXCL5 was the third most 
highly upregulated transcript across the transcriptome (Fig. 6c). We 
replicated these findings in three independent datasets (Fig. 6d). 
Of note, our MR analysis revealed that the association of CXCL5 was 
restricted to UC (unadjusted P = 2.3 × 10−6, GSMR), with no significant 
association in Crohn’s disease (CD; unadjusted P = 0.4) (Fig. 6a,e). Sup-
porting this specific pathogenic effect, CXCL5 gene expression in gut 
samples from patients with IBD was higher in UC than in CD (Fig. 6b). 
Counterintuitively (given the upregulation of CXCL5 in tissue samples 
of patients with UC), evaluation of the direction of MR association 
effect revealed that genetic susceptibility to higher plasma CXCL5 
reduces the risk of UC (Fig. 6e). This effect was consistent across 12 of 
the 13 individual genetic variants used in the MR score (Extended Data  
Fig. 10a). We found consistent directions of effect for the CXCL5 plasma 
pQTLs and the blood and gut eQTLs (Extended Data Fig. 10b), indicating 
that our results are generalizable at both the mRNA and protein levels 
and across local and systemic sites. Together, these data indicate that 
genetic tendency to lower CXCL5 is a causal risk factor for development 
of UC, despite the strong upregulation of CXCL5 once disease develops.

We observed that genetic predisposition to higher plasma CD40 
levels was associated with increased rheumatoid arthritis risk, consist-
ent with evidence from both animal models and humans implicating 
the CD40 pathway in rheumatoid pathogenesis30. In addition, our MR 
analysis identified a potential causal role for the CD40 pathway in IBD 
(including both CD and UC) and multiple sclerosis. However, the MR 
associations for these diseases had the opposite direction of effect 
compared with rheumatoid arthritis; that is, genetic predisposition to 
lower plasma CD40 levels was associated with higher risk of IBD and 
multiple sclerosis. These findings highlight how the same pathway can 

Table 1 | Putative causal protein–disease associations from 
MR analysis

Protein Disease Odds ratio 
(95% CI)

P

CD40 Rheumatoid arthritis 1.28 
(1.21–1.37)

1.4 × 10−15

CD40 Multiple sclerosis 0.75 
(0.70–0.82)

1.2 × 10−12

CD40 Crohn’s disease 0.81 
(0.75–0.87)

2.2 × 10−8

CD40 IBD 0.87 
(0.82–0.92)

1.9 × 10−6

CD5 Primary sclerosing cholangitis 0.50 
(0.35–0.70)

8.1 × 10−5

CD6 IBD 1.10 
(1.06–1.14)

2.1 × 10−7

CXCL5 UC 0.79 
(0.72–0.87)

2.3 × 10−6

IL-12B IBD 1.38 
(1.31–1.46)

1.5 × 10−30

IL-12B UC 1.38 
(1.29–1.48)

4.7 × 10−20

IL-18R1 Eczema 1.15 
(1.10–1.20)

2.1 × 10−10

IBD is based on GWASs in which Crohn’s disease and UC cases are grouped together. P is the 
two-sided P value for the causal estimate of protein on disease from the GSMR package. The 
odds ratio (OR) is associated with a 1 s.d. increase in the protein level. OR > 1 indicates that 
genetic propensity to higher levels of the plasma protein is associated with higher disease 
risk and OR < 1 with reduced risk. CI, confidence interval.
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have pleiotropic effects on disease susceptibility, but also point to the 
complexity of immune-mediated disease pathogenesis, with opposing 
effects on different diseases.

Discussion
In the present study, we performed a large-scale pQTL GWAS of 91 cir-
culating inflammation-related proteins measured using Olink immu-
noassays, identifying 180 significant primary pQTL signals (59 cis, 121 
trans). Colocalization analysis suggested that only a small proportion 
of the plasma cis-pQTLs reported in the present study are underpinned 
by the same causal genetic variant as the whole-blood cis-eQTL for the 
corresponding gene. Of note, the plasma proteome is not the direct cor-
ollary of the whole-blood transcriptome: plasma pQTL studies examine 
genetic effects on extracellular protein levels, whereas blood eQTL 
studies examine the effects on intracellular RNA levels (predominantly 
in leukocytes). This has several implications. First, plasma protein levels 
can be affected by nontranscriptional mechanisms including cleavage, 
secretion and clearance. Second, a wide range of tissues other than 
blood cells (for example, the liver) contribute to the plasma proteome. 
This is evident when considering circulating proteins that are measured 

as biomarkers in clinical practice (for example, albumin produced by 
the liver, troponin by the heart, prostate-specific antigen by the pros-
tate). Indeed, by extending our comparison across multi-tissue eQTL 
databases, we showed that at least 50% of the cis-pQTLs we observed 
are probably driven by cognate cis-eQTLs in a diverse range of tissues 
and cell types. Blood eQTL studies have been carried out using sample 
sizes similar to the sample size in our pQTL study. The eQTL studies 
in other tissues tend to be smaller and so it is likely that some of the 
plasma cis-pQTLs observed in the present study are underpinned by 
tissue-specific eQTLs that have not yet been detected due to lack of 
statistical power. Finally, other mechanisms such as alternative splic-
ing might account for some cis-pQTLs without corresponding eQTLs.

Our pQTL study identified twice as many trans associations 
compared with cis (121 versus 59, respectively), in keeping with other 
well-powered pQTL studies (for example, refs. 7–9). The integration 
of cis-pQTLs (and cis-eQTLs) with GWAS data provides useful, if some-
times obvious, insights into the upstream mechanisms of disease, 
because the mediating gene has usually already been suspected by 
virtue of the location of the GWAS signal. In contrast, trans-pQTLs rep-
resent a double-edged sword for interpreting genetic associations with 
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rs1800692, rs2228576, rs10849448, rs2364480 and rs12319859. The purple 
diamond shows the sentinel pQTL variant. Other variants are colored by LD  
to the sentinel pQTL. Two-sided P values are from meta-analysis of linear 
regression estimates.
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disease. On the one hand, they often represent a less direct link from 
genotype to disease than cis-pQTLs and, from the perspective of causal 
inference analysis, are more vulnerable to violating the assumptions of 
MR through horizontal pleiotropy. On the other hand, they can reveal 
molecular mediators of disease encoded by genes distant from the dis-
ease GWAS signal. For example, we identified a trans-pQTL (rs2364485) 
for LTA at a multiple sclerosis risk locus. This multiple sclerosis risk 
locus contains two plausible causal genes (TNFRSF1A and LTBR) and 
two independent signals for multiple sclerosis risk (rs1800693 and 
rs2364485). By integrating whole-blood eQTL and multiple sclerosis 
GWAS data, we showed that LTBR is the most likely gene mediating the 
LTA trans-pQTL at rs2364485, and one of the multiple sclerosis signals 
at the locus. LTA is a member of the TNF superfamily of proteins and 
is the only member of this superfamily that is generated as a secreted 
protein rather than through cleavage of a membrane-bound protein. 
The multiple sclerosis risk allele is associated with lower expression 
of LTBR and higher circulating protein levels of LTA, a component of 
its ligand. This raises the question of whether elevated LTA is second-
ary to lower LTBR, or vice versa (for example, through compensatory 
receptor downregulation). The distinction between cis- and trans-QTLs 
enables us to address this. Given that the eQTL for LTBR is cis and the 
pQTL for LTA is trans, it is highly likely that the former is the upstream 
effect, with the higher levels of soluble LTA occurring as a result of 
reduced binding to its receptor. This demonstrates the value of pairing 
QTLs for ligands and their receptors for deconvoluting the ordering 
of biological pathways.

Integration of pQTLs with GWAS disease signals revealed disease–
protein connections reflecting both established and plausible putative 
mechanisms of pathophysiology. For example, a cis-pQTL for TNFSF11 
(RANKL) overlapped with GWAS signals for osteoporosis and hypo-
thyroidism. The former is consistent with RANKL’s well-established 
role in bone biology and RANKL is the target of the anti-osteoporosis 
drug denosumab31. However, RANKL also plays a role in the immune 

system32 and these effects may be relevant to risk of autoimmune hypo-
thyroidism. A cis-pQTL for TNFSF12 (TWEAK) was associated with risk 
of hypertension. TWEAK is a cytokine predominantly produced by leu-
kocytes and has pleiotropic actions, including on the endothelium33,34, 
potentially explaining the association with blood pressure. A cis-pQTL 
for FGF5 was also associated with susceptibility to hypertension and 
cardiovascular diseases, with the allele associated with higher plasma 
FGF5 levels being associated with lower risk of cardiovascular diseases. 
Consistent with this, there are reports that FGF5 has cardioprotective 
effects in pig models35.

Of our pQTLs, 31 overlap GWAS hits for at least one common IMD. 
Disease–protein links identified from this analysis highlighted com-
monalities in pathogenesis between specific IMDs, mirroring the over-
lap in clinical manifestations. However, the contributions of proteins 
to IMD risk were sometimes complex, with the same protein conferring 
risk of one IMD but protecting from another. For example, genetic 
predisposition to higher levels of soluble IL-6 had opposing effects on 
risk of rheumatoid arthritis and allergic disease. We observed a similar 
phenomenon for CD40, with genetic predisposition to higher CD40 
increasing risk of rheumatoid arthritis but protecting against IBD and 
multiple sclerosis.

The development of biologic therapies targeting specific 
inflammatory proteins has transformed the clinical management of 
immune-mediated diseases36. Understanding which proteins are driv-
ers of disease and distinguishing these from proteins that are simply 
markers of inflammation is therefore important for the development 
of new treatments. To this end, we used MR to evaluate the causal con-
tributions of proteins to different IMDs. Our results identify pathways 
that are already the target of existing drugs (for example, IL-12B in 
IBD), providing confirmation of the utility of this approach, and also 
highlight new potential therapeutic targets.

One such example was the CD40 pathway in rheumatoid arthritis. 
CD40 is a stimulatory receptor constitutively or inducibly expressed on 
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both immune and nonimmune cells37. Its ligand, CD40L, is expressed 
primarily on activated T cells but also on a range of other cell types. 
CD40L–CD40 binding triggers immune cell activation and prolifera-
tion and inflammatory cytokine production and the differentiation 
of B cells into immunoglobulin (Ig)G-secreting plasma cells, making 

it central to antibody responses. In a murine model of inflammatory 
arthritis, knock-out or inhibition of the CD40 pathway resulted in 
reduced inflammation38. Observational studies have demonstrated 
upregulation of CD40L in the blood and tissues of patients with 
rheumatoid arthritis and other autoimmune rheumatic diseases30,39.  
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These findings motivated development of drugs targeting the CD40 
pathway in rheumatoid arthritis and other IMDs, but anti-CD40L ther-
apy was complicated by thrombosis due to cross-linking CD40L on 
platelets. Therapeutic targeting of CD40 rather than CD40L may avoid 
this. Our MR results suggest rheumatoid arthritis as a candidate for this 
approach. However, the directionally discordant effects we observed 
of CD40 on rheumatoid arthritis versus multiple sclerosis and IBD 
raises the possibility of triggering other forms of immune-mediated 
diseases as a side effect of anti-CD40 therapy. This has some parallels 
with therapies targeting TNF, which are effective in rheumatoid arthritis 
but not in multiple sclerosis, and indeed can worsen multiple sclerosis 
or provoke de novo central nervous system demyelination40,41.

Our MR findings implicate CXCL5 in the etiology of UC, where 
genetic susceptibility to higher levels of plasma CXCL5 was associ-
ated with lower UC risk. Examination of eQTL data revealed that this 
observation was consistent at the RNA level in both blood and gut 
tissue. By contrast, in our case–control analysis comparing gut tissue 
from patients with UC with that from controls, CXCL5 is one of the most 
upregulated transcripts. A previous study reported that serum levels 
of CXCL5 are higher in IBD patients than in controls42. Recent studies 
using UC gut tissue have implicated upregulation of genes encoding 
neutrophil-targeting chemokines, including CXCL5, by nonimmune 
cells as correlating with important histopathological features, such 
as ulceration, and differentiating patient trajectories, including their 
responsiveness to different treatments43,44. Targeting CXCR2, the recep-
tor for CXCL5, significantly attenuates animal models of UC44. One pos-
sible explanation that may reconcile these apparently contradictory 
findings is that genetic tendency to lower CXCL5 expression increases 
UC risk through impaired mucosal immune homeostasis, but that 
elevated CXCL5 is an important driver of tissue injury once disease has 
been initiated. By analogy, a noncoding genetic variant associated with 
lower gene and protein expression of TNFSF15 (encoding the inflam-
matory cytokine TL1A) in monocytes and macrophages increases IBD 
susceptibility45, but TL1A is upregulated both systemically and in the 
gut in patients with active IBD46,47, and anti-TL1A therapies have recently 
shown efficacy in IBD in phase 2 randomized trials (NCT05013905 and 
NCT04996797 (ref. 48)).

Our study has several limitations. Our pQTL analysis was restricted 
to 91 proteins, limiting the generalizability of our findings, particularly 
with regard to genetic architecture. As this was a pQTL meta-analysis, 
study-level technical variation resulted in heterogeneity, which 
necessitated the filtering out of potentially spurious associations 
that were inconsistent across cohorts. There is a risk that some true 
biological signals were also removed in this process. Very large single 
cohorts with standardized sample processing such as UK Biobank 
will avoid this issue. Our meta-analysis consisted predominantly of 
general population cohorts without inflammatory disease. There 
may be context-specific pQTLs that are present only during infection 
or inflammation, which our study may not have detected. By anal-
ogy, eQTL studies using human immune cells stimulated in vitro (for 
example, with lipopolysaccharide or interferon) have demonstrated 
eQTLs that are not present in resting cells but become apparent in 
the context of cellular activation49,50. Conducting well-powered pQTL 
studies in patients with inflammation will be an important future 
research endeavor. Where proteins exist in both membrane-bound 
and cleaved states, it is not always clear whether plasma proteomic 
assays are exclusively capturing the soluble form or also protein from 
cell membranes (for example, arising from in vivo sources such as exo-/
ectosomes or ex vivo processes such as venepuncture or sample pro-
cessing). This complicates the interpretation of the direction of effect 
from MR analysis. Future well-powered studies examining genetic 
determinants of cell-surface protein expression measured through 
flow cytometry would provide valuable complementary informa-
tion to aid the interpretation of plasma pQTL studies. Finally, as with 
all epidemiological-scale pQTL studies, proteins were measured in 

plasma (that is, the extracellular component of blood), which may not 
always be the disease-relevant biological compartment, and where the 
direction of genotype-expression association may even be opposite 
to the site of inflammation. Thus, future tissue- and cell-specific pQTL 
studies will be valuable to understand differences in genetic signals 
across tissues.

In summary, we have used a large international consortium to 
identify the genetic determinants of a set of inflammation-related 
proteins, providing insight into the etiology of immune-mediated 
diseases. The pQTL summary statistics generated in the present study 
will be a valuable resource for interrogating future disease GWASs and 
guiding drug target identification and prioritization.
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Methods
Cohorts
We recruited 11 cohorts, totaling 14,824 participants, with genome-wide 
genetic data and plasma proteomic data measured using the Olink 
Target Inflammation panel. All participants provided written, informed 
consent. No statistical methods were used to predetermine sample 
sizes but our sample sizes are similar to or larger than those reported 
in previous publications1–4,7–9. Cohort details are provided in Supple-
mentary Note 1.

Protein assays
Plasma proteins were measured using the Olink Target-96 Inflammation 
immunoassay panel, which measures 92 inflammation-related proteins. 
Proteomic data for each cohort were generated at Olink laboratories in 
Uppsala. During the course of the project, brain-derived neurotrophic 
factor (BDNF) was removed from the inflammation panel by Olink due 
to assay problems, so 91 proteins were included in our study (Sup-
plementary Table 2). Normalized Protein eXpression (NPX) is Olink’s 
normalized relative units on a log2 scale. Olink defines the LLOD for 
quantification of each protein as 3 s.d. above background (determined 
using blank control samples), but provides NPX as continuous data 
which can include values below the calculated LLOD. We had access 
to individual-level data for INTERVAL, the largest contributing cohort 
(n = 4,896) and used this to calculate the proportion of samples less 
than the LLOD for each protein (Extended Data Fig. 2a).

Genotyping
Each cohort was genotyped on an SNP array and imputed using either 
a 1000 Genomes or Haplotype Reference Consortium (HRC) panel 
(Supplementary Table 1).

Cohort-level pQTL mapping
In each cohort, a GWAS analysis was run for each protein using linear 
regression (additive genetic association model) with protein level as 
the dependent variable. Proteins were inverse-rank normalized before 
linear regression and thus met the assumptions of the statistical test. 
Population substructure was adjusted for by including genetic prin-
cipal components as covariates. We also included age, sex and other 
study-specific covariates in the model (Supplementary Table 1). To 
avoid proteins with truncated distributions due to LLOD, with multiple 
tied values that would violate linear regression assumptions, pQTL 
analysis was performed using continuous protein values (including 
those below the LLOD where relevant). We illustrate the value of this 
approach in recovering biological signals in Extended Data Fig. 2b.

The pQTL meta-analysis
We meta-analyzed pQTL summary statistics from each cohort (Sup-
plementary Table 1), representing a total of 14,824 participants. A 
schematic of our analysis pipeline is shown in Extended Data Fig. 1. 
Before the meta-analysis, we applied cohort-level filters to pQTL GWAS 
summary statistics with respect to MAF (≥0.001), Hardy–Weinberg 
equilibrium (P > 10−6) and imputation score (r2 ≥ 0.3 or SNPTEST proper_
info≥0.4). For each cohort, we generated QQ plots and Manhattan plots 
for visual examination using the R packages qqman v.0.1.4 and QCG-
WAS v.1.0-8. We performed the fixed-effects meta-analysis using the 
METAL software (v.28.8.2018), and inverse-variance weighted analysis 
of regression betas and standard errors from the cohort-level summary 
statistics. From the meta-analysis summary statistics, we calculated the 
genomic inflation factor for each protein GWAS and generated QQ and 
Manhattan plots (Supplementary Fig. 1). We generated Forest plots to 
examine intercohort heterogeneity using the gap package v.1.2.3-6. 
Regional association plots were generated using LocusZoom 1.4 (Sup-
plementary Fig. 2). We defined statistical significance as P ≤ 5 × 10−10 
(based on Bonferroni correction of the conventional ‘genome-wide’ 
significance threshold P ≤ 5 × 10−8 for approximately 100 proteins).

To remove potentially erroneous meta-analysis signals aris-
ing due to a strong association in a single cohort, we examined the 
meta-analysis results at each sentinel variant by visual inspection of 
the Forest plot and imposed the following criteria: (1) to be included 
in the meta-analysis, a variant was required to be present in at least 3 
studies and at least 3,500 participants; and (2) to be declared signifi-
cant, we required a meta-analysis P ≤ 5 × 10−10 and, if there was evidence 
of heterogeneity with I2 > 30%, then we required the P value in at least 
three studies to be <0.05 and the direction of effect in those studies to 
be consistent with the overall meta-analysis results. These were imple-
mented through modification of the METAL source code.

Replication cohort
We compared the results from our primary meta-analysis with pQTL 
results generated in an independent set of 1,585 participants from the 
ARISTOTLE study12,52.

Definition of pQTL sentinel variants and regions
We defined a pQTL as a genetic locus significantly (P ≤ 5 × 10−10) associ-
ated with protein abundance. We defined the sentinel variant at a locus 
as the variant with the lowest P value in the region for a given protein.  
We used the following approach for each protein to define genomic 
regions and the sentinel variant in each: (1) we first obtained a list of 
significant (P ≤ 5 × 10−10) variants and the flanking region (±1 Mb) for 
each variant; (2) overlapping regions were then iteratively merged until 
no overlapping regions remained; and (3) the most significant variant 
in each resulting region was then defined as the sentinel variant. This 
approach has the flexibility to cope with long stretches of LD while 
avoiding the drawback of setting a longer than necessary region for all 
variants. The algorithm was implemented using bedtools v.2.27.0. Sig-
nals within 1 Mb of the transcription start site (TSS) of the gene encoding 
the target protein were defined as cis and those beyond 1 Mb as trans.

Protein variance explained by pQTLs
We used the following equation to estimate the proportion of vari-
ance explained (PVE) by (T) pQTLs from the meta-analysis summary 
statistics for each protein:

PVE =
T
∑
i=1

χi2

χi2 + Ni − 2
(1)

where χ2i  is the χ2 score for pQTL variant i calculated from its estimated 
effect size and standard error and Ni is the associated sample size.

Conditional analysis
To identify conditionally independent signals within a genomic region, 
we performed approximate stepwise conditional analyses using GCTA 
v.1.93.0beta with the ‘--cojo-slct’ option, using estimated effect sizes 
and standard error values from the meta-analysis. We estimated the 
correlation between variants using individual-level data from the 
INTERVAL study. As GCTA imputes LD from mean genotypes when they 
are missing, to avoid bias we excluded variants with MAF < 1% (unless 
they were sentinel variants). For stepwise selection, we considered only 
those variants passing the genome-wide threshold (P ≤ 5 × 10−10), rather 
than all variants in the region. As in certain cases GCTA conditional 
analysis yielded results involving pairs of variants in relatively high 
LD (r2 ≥ 0.7), we restricted the results to independent genetic variants 
(defined as r2 ≤ 0.1 (ref. 53), based on LD calculation in the INTERVAL 
cohort, where we had access to individual-level genotype data) while 
forcing the inclusion of the sentinel variants in the pruned set54 (Sup-
plementary Table 4).

Identification of known pQTLs
To identify previously reported pQTLs, we manually curated pub-
lished results from the literature obtained from the National Center 

http://www.nature.com/natureimmunology


Nature Immunology

Article https://doi.org/10.1038/s41590-023-01588-w

for Biotechnology Information’s (NCBI’s) web interface (https://
pubmed.ncbi.nlm.nih.gov) through its Entrez programming utility 
R/rentrez55, PhenoScanner v.2 (ref. 56) and the NHGRI-EBI GWAS 
catalog with phenotypes mapped to the experimental factor ontology 
(EFO) EFO_0004747 (protein measurement), restricting the results 
to associations reported in European-ancestry populations. We con-
sidered previously reported pQTLs to be variants that reached the 
conventional genome-wide significance threshold P ≤ 5 × 10−8 and 
that were in high LD (r2 ≥ 0.8) with the pQTL sentinel variant from 
our meta-analysis.

Variant annotation
We obtained the absolute distance of sentinel variants to the TSS of the 
gene encoding the target protein using the rGREAT (Genomic Regions 
Enrichment of Annotations Tool)57 R package. We annotated sentinel 
variants and LD proxies (defined as r2 ≥ 0.8, using the INTERVAL dataset 
as the LD reference panel) and Ensembl’s Variant Effect Predictor (VEP, 
v.98.3) including the LOFTEE plugin.

The eQTL–pQTL colocalization analysis
We performed pairwise statistical colocalization analyses of cis-pQTLs 
identified in the meta-analysis with cognate cis-eQTL data from eQTL-
Gen14, the eQTL Catalogue17 and GTEx v.8 (ref. 15). We extracted the 
meta-analysis summary statistics for each cis-pQTL sentinel and their 
±1 Mb flanking regions, then extracted the same genomic windows 
from their cognate cis-eQTL data. eQTLGen comprises eQTL data from 
31,684 participants on 19,250 genes that are robustly expressed in 
blood (https://www.eqtlgen.org/cis-eqtls.html). Of our 59 cis-pQTLs, 
there was genome-wide significant (P ≤ 5 × 10−8) cis-eQTL for 40 genes 
in the eQTLGen data. One gene (TGFB1) had a cis-eQTL at FDR < 0.05 
but that was not genome-wide significant (P = 1.8 × 10−7) and two had 
no eQTL association (IL17C, TNFSF11). Sixteen genes had no eQTL data 
in the eQTLGen summary statistics, presumably due to lack of robust  
expression in blood; these were: CCL11, CCL13, CCL19, CCL20, CCL7,  
CST5, CX3CL1, CXCL11, DNER, FGF21, FGF5, GDNF, IL12B, MMP10, NGF  
and TNFRSF11B.

For GTEX v.8 and the eQTL Catalogue, all 59 cis-pQTLs had corre-
sponding eQTL summary statistics available for colocalization testing 
across one or more tissues. We performed colocalization analyses 
using the coloc R package as implemented in v.5.2.2 of the eQTL Cata-
logue/colocalization workflow17 (https://github.com/kauralasoo/eQTL- 
Catalogue-resources). Coloc returns posterior probabilities indicat-
ing the likelihood that the following scenarios are true: there is no 
association at the locus with either protein or mRNA (PP0); there is an 
association with protein abundance but not mRNA expression (PP1); 
there is no association with protein abundance but there is an associa-
tion with mRNA expression (PP2);) there is an association with both the 
protein and the mRNA but with distinct causal variants (PP3); there 
is an association with both the protein and the mRNA with a shared 
causal variant (PP4). We considered a PP4 ≥ 0.8 to be robust evidence 
of colocalization between a cis-pQTL and its cognate cis-eQTL. As 
eQTLGen data only provide allele frequency (f) and z-score statistic 
for a particular variant, we obtained the effect size (b) and its standard 
error (s.e.) as follows58:

b = z/d (2)

s.e. = 1/d (3)

where

d = √2f (1 − f ) (z2 + N) (4)

and N  is the sample size.

Prioritizing probable mediating genes at trans-pQTLs
To prioritize probable mediating genes at trans-pQTLs, we used the 
ProGeM tool18. To identify cis-eQTLs that could mediate trans-pQTLs, 
we queried the trans-pQTL sentinel variants in eQTLGen14, the eQTL Cat-
alogue17 and the GTEx (v.8) data. To determine whether the trans-pQTL 
sentinel variants are likely to be causal cis-eQTL variants in the eQTL 
Catalogue and GTEx data, we used the fine-mapped eQTL credible 
sets available at the eQTL Catalogue (https://www.ebi.ac.uk/eqtl/ 
Data_access). For the eQTLGen data, where credible sets were not avail-
able, we used a manual approach whereby we: (1) first defined a region 
around each trans-pQTL sentinel variant of ±500 kb; (2) identified the 
variant with the lowest cis-eQTL P value in this region for the cis-affected 
gene(s); and (3) checked to see whether this sentinel cis-eQTL variant 
was the same sentinel variant for the trans-pQTL, or if the two were in 
high LD (r2 ≥ 0.8).

For the ‘top-down’ component of ProGeM, we first identified 
locally encoded genes using a window around each trans-pQTL sen-
tinel variant of ±500 kb. We then probed the proteins encoded by 
these local genes using: (1) protein–protein interaction (PPI) data 
and (2) data from functional annotation databases. With the PPI data, 
we sought to determine whether there was evidence to indicate that 
genes residing close to each sentinel variant might interact with the 
corresponding trans-affected protein. We used the Bioconductor pack-
age STRINGdb (v.2.8.4) to identify any pairwise interactions. We used 
data from functional annotation databases to determine whether any 
local genes encode proteins that might be functionally related to the 
corresponding trans-affected protein(s). For both the trans-affected 
proteins and the locally encoded proteins, all assigned GO terms, Reac-
tome pathways and KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathways were extracted using the Bioconductor biomaRt (v.2.52) and 
KEGGREST (v.1.36) packages. To assess whether there was significant 
overlap between the functional annotation terms/pathways assigned 
to locally encoded proteins and the corresponding trans-affected 
proteins, we determined the number of shared and nonshared terms 
for each local gene and the corresponding trans-affected protein. 
Fisher’s exact test was then applied for each local gene–trans-protein 
combination and P values were Bonferroni corrected for the number 
of local genes at each given trans-pQTL. The background set of terms 
for each trans-pQTL was composed of all terms assigned to all local 
genes at the locus (that is, all protein-coding genes within 500 kb of 
the sentinel variant).

To determine the most likely mediating genes for the multi- 
locus-regulated proteins IL-12B, KITLG and TNFSF10 (TRAIL), we used 
the STRINGdb webtool to identify interactions or functional rela-
tionships between genes residing at distinct loci. This is based on the 
concept that, if the mediating genes at distinct loci are all associated 
with plasma levels of the same protein, then they may share some other 
functional relationship. As input to STRINGdb, we used all proteins 
encoded by candidate mediating genes identified by ProGeM (Sup-
plementary Table 9) at each of the loci for a given protein, as well as 
the relevant trans-affected protein. We deemed clusters of proteins 
residing at distinct loci with multiple functional interactions to be the 
most likely mediating genes at their respective loci. We performed a 
phenome-scan of the trans-pQTLs for KITLG using the Open Targets 
Genetics webtool59.

Overlap of pQTL and disease traits
We used a PhenoScanner v.2-based R code to look up associations 
of our pQTL sentinels and their LD proxies (r2 ≥ 0.8) in disease GWAS 
summary statistics.

To investigate potential colocalization between a trans-pQTL 
(rs2364485) for LTA identified in our meta-analysis, a multiple scle-
rosis GWAS signal25 and a cis-eQTL for LTBR from eQTLGen14, we used 
HyPrColoc for multi-trait colocalization60. We obtained multiple 
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sclerosis summary statistics (MSchip, ‘discovery_metav3.0.meta.gz’) 
from Patsopoulos et al.25 by a request to the International Multiple 
Sclerosis Genetics Consortium. Due to a lack of genotype coverage 
at the LTBR/TNFRSF1A locus in the extended and replication samples 
from Patsopoulos et al., we selected the summary statistics from the 
‘discovery’ sample (n = 41,505) for colocalization analyses, not the 
full meta-analysis. As a result, the P value for association between the 
variant of interest (rs2364458) and multiple sclerosis in the discovery 
subset (P = 5.78 × 10−6, logistic regression) was higher than reported 
in Patsopoulos et al.25 (P = 2.0 × 10−20, fixed-effects meta-analysis). 
We then extracted summary statistics for rs2364458 (±1 Mb) (chr12: 
5514963-7514963) from each of the three datasets and performed condi-
tional analyses to adjust for any independent signals at the locus using 
GCTA-COJO. We ran this using a two-step approach: we first used the 
COJO-slct function to identify independent signals at the locus and 
then, for datasets with signals independent of rs2364485, we used 
COJO-cond to generate conditioned summary statistics for use in 
HyPrColoc. HyPrColoc returns the posterior probability that two or 
more traits colocalize, akin to PP4 from coloc. We considered a PP ≥ 0.8 
as robust evidence of colocalization between traits.

MR analyses
We performed MR analyses using the proteins with cis-pQTLs identified 
in this meta-analysis as exposures and IMDs as outcomes. All MR analy-
ses were run using the GSMR method28, which implements two-sample 
MR accounting for correlation between variants. For each protein 
analyzed, we defined a ±1-Mb window around the gene encoding it and 
extracted pQTL summary statistics for this region. For outcome data, 
we downloaded GWAS summary statistics for IMDs from OpenGWAS 
(https://gwas.mrcieu.ac.uk/datasets) or the GWAS catalog (https:// 
www.ebi.ac.uk/gwas/downloads), where studies with larger sample 
sizes or more variants were available. For IMDs with several alternative 
datasets available, we selected the dataset with the largest number of 
cases, provided that it: (1) had genotype data with sufficient coverage 
at the loci of interest, (2) was generated in European-ancestry sam-
ples so that it matched the ancestry of the participants in our pQTL 
meta-analysis and (3) had effect estimates and s.e. values either avail-
able or calculable. Proteins encoded by genes in the HLA region were 
excluded because MR analysis would be confounded by complex LD. 
The analysis involved 57 proteins and 14 diseases. We used the GSMR 
implementation in GCTA with the following parameters: (1) at least 
three (--gsmr-snp-min 3) genome-wide significant (--gwas-thresh 5e-8), 
quasi-independent variants (--clump-r2 0.1); (2) difference in the allele 
frequency of each effect allele between the GWAS summary datasets and 
the LD reference sample of at most 0.4 (--diff-freq 0.4); and (3) a P-value 
threshold of 0.05 for the HEIDI-outlier filtering analysis (--heidi-thresh 
0.05), which is used to identify potential confounding by LD (https://
yanglab.westlake.edu.cn/software/gcta/#Mendelianrandom 
isation). The P values were corrected for the number of models tested 
using the Benjamini–Hochberg correction, with FDR < 0.01 used to 
define statistical significance.

To evaluate the robustness of significant associations, we per-
formed additional checks. First, we checked the strength of the disease 
association in the GWAS summary statistics. Of the 22 significant, 
protein–disease MR associations, we eliminated 5 due to the lack of 
convincing disease association (smallest P value at the locus >1 × 10−4). 
For the remaining 17 MR associations, we then evaluated whether 
there might be confounding due to LD. We first evaluated r2 between 
the sentinel pQTL and the disease-associated variant. For 12 of 17 dis-
ease–protein pairs, r2 was >0.8 (Supplementary Table 14). We next 
performed visual inspection of regional association plots of these 12 
pQTL–disease pairs (Supplementary Fig. 4) and colocalization testing 
using pairwise conditional and colocalization analysis (PWCoCo)61,62, 
which accounts for the presence of multiple independent signals within 
a locus (see below).

PWCoCo
PWCoCo61,62 integrates conditional analyses (GCTA-COJO) to identify 
independent signals for each of two tested traits associated with a 
genomic region, followed by pairwise colocalization analyses (COLOC) 
to test all possible pairs of conditionally independent signals across 
the traits. We ran PWCoCo for the 12 significant protein–disease pairs 
that resulted from our MR-filtering steps using the default parameters, 
detailed as follows: (1) P-value cutoff for variants to be selected by the 
stepwise selection process, --p_cutoff 5 × 10−8 for disease and protein 
summary statistics; (2) a large number of variants subject to the step-
wise selection process, --top_snp 1 × 10−10; (3) distance beyond which 
variants are treated as in linkage equilibrium, --ld_window 1 × 10−7 (kb); 
(4) collinearity threshold for variants, --collinear 0.9; (5) variant fre-
quency filter for the reference dataset according to this threshold, --maf 
0.1; (6) exclusion threshold for variants with allele frequency difference 
between the phenotype and the reference datasets, --freq_threshold 
0.2; (7) stop criteria, --init_h4 80 (that is. 80%); and (8) the three prior 
probabilities, --coloc_pp 1 × 10−4, 1 × 10−4 and 1 × 10−5.

CXCL5 differential expression analysis in UC cohorts
Changes in CXCL5 gene expression levels were evaluated in four inde-
pendent cohorts, including the IBD TaMMA platform29, the GEO series, 
accession nos. GSE16879 and GSE206285, and the Imperial UC cohort. 
IBD TaMMA (https://ibd-meta-analysis.herokuapp.com) gives access to 
3,853 transcriptomic profiles from 26 independent studies including 
IBD and control samples across different tissues, all processed with 
the same pipeline and batch corrected29. Pre-computed differential 
expression results between colon biopsies from patients with UC versus 
healthy donors were downloaded and plotted.

Data from Gene Expression Omnibus (GEO) accession no. 
GSE16879 used in the present study consist of colonic mucosa micro-
array expression profiles from healthy donors (n = 6) and patients with 
UC (n = 24) sampled before the first infliximab treatment63. CEL file 
import into R, and background correction, RMA (Robust Multiarray 
Averaging) normalization of the raw intensity data were carried out 
using the oligo package. Only probe sets with median expression >4 
and uniquely associated with a single ENTREZ gene identifier were 
kept for analysis. Intensity data for different probe sets mapped to the 
same ENTREZ gene identifier were combined by taking the geometric 
mean sample wise. Tests of differential gene expression of UC samples 
compared with healthy control samples were performed using the 
limma package. P values were adjusted for multiple testing using the 
Benjamini–Hochberg procedure.

GEO accession no. GSE206285 contains array-based transcrip-
tomic data collected at baseline as part of UNIFI, a randomized, 
placebo-controlled, phase 3 clinical trial evaluating the efficacy and 
safety of ustekinumab64. RMA signal intensity profiles and associated 
donor information were downloaded from NCBI’s GEO. Only probe sets 
associated to only one ENTREZ gene identifier were kept for analysis. 
Intensity data for different probe sets mapped to the same ENTREZ 
gene identifier were combined by taking the geometric mean sample 
wise. Genes with median expression >3 across all samples were tested 
for differential expression between UC samples (n = 550) versus healthy 
control samples (n = 18) using the R limma package. P values were 
adjusted for multiple testing with the Benjamini–Hochberg procedure.

The Imperial UC cohort includes whole-tissue biopsies from 
patients with UC (n = 16) and healthy volunteers (n = 6). RNA was 
extracted (QIAGEN RNeasy mini-kit) and sequencing libraries were gen-
erated using NEBNext Ultra RNA Library Prep Kit for Illumina (New Eng-
land Biolabs (NEB)) following the manufacturer’s recommendations. 
Briefly, mRNA was purified from total RNA using poly(T) oligo-attached 
magnetic beads. Fragmentation was carried out using divalent cations 
under an elevated temperature in NEBNext First Strand Synthesis Reac-
tion Buffer (5×). First-strand complementary DNA was synthesized 
using random hexamer primer and M-MuLV reverse transcriptase 
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(RNase H). Second-strand cDNA synthesis was subsequently performed 
using DNA polymerase I and RNase H. Remaining overhangs were 
converted into blunt ends via exonuclease/polymerase activities. 
After adenylation of 3′-ends of DNA fragments, the NEBNext Adapter 
with hairpin loop structure was ligated to prepare for hybridization. 
Library fragments were purified with AMPure XP system (Beckman 
Coulter) and treated with 3 μl of USER Enzyme (NEB) at 37 °C for 15 min, 
followed by 5 min at 95 °C. Then PCR was performed with Phusion 
High-Fidelity DNA polymerase, universal PCR primers and index (X) 
primer. Library quality was assessed on Agilent Bioanalyzer 2100 and 
Nanodrop ND-1000 Spectrophotometer. The library preparations 
were sequenced on an Illumina HiSeq platform, generating 150-bp 
paired-end reads. The resulting fastq files were processed with trim-
momatic65 (v.0.39) to remove adapter contamination and poor-quality 
bases. The output read files were mapped to the GRCh38 assembly of 
the human genome using Hisat2 (ref. 66) (v.2.2.1) with default param-
eters. The number of reads mapping to the genomic features annotated 
in Ensembl with a MAPQ score ≥10 was calculated for all samples using 
htseq-count67 (v.0.11.3) with default parameters. Data for Ensembl 
genes with no associated ENTREZ gene identifier were discarded; the 
read counts for Ensembl genes mapped to the same ENTREZ gene iden-
tifier were summed up sample wise. Differential expression analysis 
between UC versus healthy biopsies was performed in R (v.3.6.1) using 
Wald’s test as implemented in DESeq2. Only genes with an average 
read count across samples ≥10 were tested for differential expres-
sion. P values were adjusted for multiple testing using the Benjamini– 
Hochberg procedure.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Full per-protein GWAS summary statistics are available for down-
load at https://www.phpc.cam.ac.uk/ceu/proteins and the EBI GWAS 
Catalog (accession numbers GCST90274758 to GCST90274848). 
Individual-level genetic and proteomic data available for the INTERVAL 
cohort are deposited in the European-Genome Phenome Archive under 
accession no. EGAS00001002555. Gene expression data are in GEO 
under accession no. GSE16879 for mucosal expression in patients with 
IBD (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16879) 
and GSE206285 for the UNIFI trial (https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE206285) and in the the IBD TaMMA (https:// 
ibd-meta-analysis.herokuapp.com). Whole-blood cis-eQTL summary 
statistics from the eQTLGen Consortium were downloaded from 
https://www.eqtlgen.org/cis-eqtls.html. Fine-mapped eQTL credible 
sets were downloaded from the eQTL Catalogue (https://www.ebi. 
ac.uk/eqtl/Data_access). MR GWAS summary statistics for IMDs were 
downloaded from OpenGWAS (https://gwas.mrcieu.ac.uk/datasets) or 
the GWAS catalog (https://www.ebi.ac.uk/gwas/downloads).

Code availability
GitHub: https://jinghuazhao.github.io/INF; cambridge-ceu: https:// 
cambridge-ceu.github.io/public (modified METAL, pQTLtools).
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Extended Data Fig. 1 | Overview of the pQTL analysis. Schematic of the analysis pipeline.
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Extended Data Fig. 2 | Plasma protein abundance and pQTL detection.  
a) Proteins with low abundance are more likely to have no detectable pQTL. 
Y-axis: percentage of samples above lower limit of detection for each protein, 
calculated using the INTERVAL data (n = 4,896) for which we had individual-level 
protein data available. Blue and red points indicate presence or absence of at 

least 1 significant pQTL in the GWAS meta-analysis, respectively. b) Manhattan 
plot for genetic associations with plasma IL17C, where the red horizontal line 
indicates the statistical significance threshold (5 × 10−10). P-values from linear 
regression.
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Extended Data Fig. 3 | pQTL replication in the ARISTOTLE cohort. Comparison 
of effect sizes between pQTLs from the discovery pQTL meta-analysis (n = 14,824) 
and the ARISTOTLE cohort (n = 1,585). Each point represents a genetic variant 

that was a significant pQTL in the discovery meta-analysis. Effect size = standard 
deviation (sd) increase in protein per allele. 174 of 180 genetic variants were 
available for testing in the ARISTOTLE data. Red= cis, Blue= trans.
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Extended Data Fig. 4 | Genetic architecture of circulating inflammation-
related proteins. a) Relationship between minor allele frequency (MAF), pQTL 
effect size and proportion of variance explained (2MAF(1-MAF)Effect2), for 
227 conditionally independent pQTLs (red=cis, blue=trans). b) Proportion of 

variance explained (PVE) by the conditionally independent variants associated 
with each protein. Proteins are annotated using the gene symbol of their 
encoding genes. Protein names are coloured in red if over 80% of samples have 
levels below the lower limit of detection in the INTERVAL dataset.
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Extended Data Fig. 5 | Chemokine trans-pQTL hotspot. Forest plot showing 
the associations for the pleiotropic trans-pQTL at rs12075 (GRCh37, 1:158175353-
160525679) with plasma levels of chemokines and blood cell counts. Center of 

bar = effect size estimate, whiskers = 95% confidence interval (cI). WBC = white 
blood cell count. P = p-value, b= beta (effect size). SE = standard error. Blood cell 
association data from Chen et al.20. P-values from linear regression.
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Extended Data Fig. 6 | Colocalisation of pleiotropic chemokine trans-pQTL and blood cell count trait signals. Regional association plots in the region around 
rs12075 (GRCh37, 1:158175353-160525679). a, Association with plasma chemokine levels. b, Associations with basophil, monocyte and white blood cell (WBC) counts 
using data from Chen et al.20. P-values from linear regression.
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Extended Data Fig. 7 | Interactions between the candidate mediators for multi-locus-regulated proteins. a) TNFSF10 (also known as TRAIL), b) KITLG (also known 
as stem cell factor), and c) IL12B. The graphs were generated using the STRINGdb (v11.5) webtool. The colouring of the edges indicates the type of evidence supporting 
an interaction, as shown in the legend above.
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Extended Data Fig. 8 | Protein-disease connections from overlap of pQTLs 
and disease GWASs. The protein and the corresponding pQTL sentinel variant 
are indicated in the format of protein-rsid. The nearest gene to the pQTL sentinel 
variant is shown in brackets. Red lettering= cis-pQTL, blue lettering= trans-

pQTL. Asterix indicates the genetic variant lies in the HLA region. Red squares: 
genetic susceptibility to increased plasma levels of the protein is associated with 
increased disease risk. Blue squares: decreased disease risk.
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Extended Data Fig. 9 | Protein and immune-mediated disease (IMD) 
connections from overlap of pQTLs and disease GWASs. The protein and the 
corresponding pQTL sentinel variant are indicated in the format of protein-rsid. 
The nearest gene to the pQTL sentinel variant is shown in brackets. Red lettering= 

cis-pQTL, blue lettering= trans-pQTL. Asterix indicates the genetic variant lies 
in the HLA region. Red squares: genetic susceptibility to increased plasma levels 
of the protein is associated with increased disease risk. Blue squares: decreased 
disease risk.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Mendelian randomisation analysis for CXCL5 and 
ulcerative colitis. a) Scatterplot showing the 13 variants used in the GSMR 
analysis assessing the effect of CXCL5 on ulcerative colitis (UC) risk from the 
GWAS by de Lange et al (ref. 51) Each point represents a genetic variant, and 
indicates the effect size of the variant on CXCL5 levels versus UC risk (log odds 
ratio). Vertical and horizontal lines represent 95% confidence intervals. b) 
Directional concordance between CXCL5 pQTL and blood and colon tissue 

eQTLs. Forest plots showing effect size estimates for rs450373 pQTL in plasma 
(from our discovery meta-analysis) and eQTLs in whole blood and transverse 
colon tissue (GTEx v8 data). OR= odds ratio, calculated from beta estimate 
(representing the change in inverse-rank normalised plasma protein level 
in standard deviations associated with each copy of the effect allele). CI = 
confidence interval. P = p-value. Centre of bar = OR estimate, whiskers = 95% CI.
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