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CD4+ T cell calibration of antigen-presenting 
cells optimizes antiviral CD8+ T cell immunity
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Antiviral CD8+ T cell immunity depends on the integration of various 
contextual cues, but how antigen-presenting cells (APCs) consolidate these 
signals for decoding by T cells remains unclear. Here, we describe gradual 
interferon-α/interferon-β (IFNα/β)-induced transcriptional adaptations 
that endow APCs with the capacity to rapidly activate the transcriptional 
regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. 
While these responses operate through broadly used signaling components, 
they induce a unique set of co-stimulatory molecules and soluble mediators 
that cannot be elicited by IFNα/β or CD40 alone. These responses are critical 
for the acquisition of antiviral CD8+ T cell effector function, and their activity 
in APCs from individuals infected with severe acute respiratory syndrome 
coronavirus 2 correlates with milder disease. These observations uncover a 
sequential integration process whereby APCs rely on CD4+ T cells to select 
the innate circuits that guide antiviral CD8+ T cell responses.

Antigen-presenting cells (APCs) depend on capturing and present-
ing viral antigens through major histocompatibility complex (MHC) 
molecules to prime naive T cells and restimulate antigen-experienced 
T cells during virus infections1–3. Effective T cell responses also hinge on 
a variety of non-antigenic signals that are relayed from APCs to T cells by 
co-stimulatory molecules and soluble mediators. It is well established that 
such contextual cues broadly reflect the exposure of APCs to inflamma-
tory cytokines, such as interferon-α/interferon-β (IFNα/β) and danger sig-
nals that stimulate the NF-κB pathway3,4. Yet, the number of co-stimulatory 
molecules and soluble mediators that APCs use to convey these cues to 
T cells is discrete, and the expression of many of these factors continues 

to change as the APCs interact with T cells. For example, CD4+ T cells 
responding to antigen rapidly increase the expression of CD40L and 
provide stimulation back to the APC via CD40 and the NF-κB pathway5. 
Such ‘T cell help’ involves cooperation with innate stimuli6,7, but how 
APCs integrate these different signals at the cellular level and whether 
such cooperation requires prolonged interactions with CD4+ T cells or 
follows more dynamic patterns is currently unclear. Resolving how APCs 
integrate and relay these different signals to CD8+ T cells is important for 
our general understanding of how the innate–adaptive cross-talk regu-
lates T cell responses and will provide key insights required to improve 
CD8+ T cell responses during infection and vaccination.
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30, 60, 120 or 180 min of the stimulation. Il15 expression increased 
after 1–2 h of IFNαA stimulation, and this expression increased more 
than twofold in the presence of CD40 antibody (Fig. 2a). Tnf, Cxcl16 and 
Cd83 were also induced in BMDC1s after 2–3 h of IFNαA stimulation  
(Fig. 2a), indicating that BMDC1s required ~2 h of IFNα/β exposure 
before they responded to CD40 triggering. We then determined 
whether IFNα/β conditioned the BMDC1s for CD40 responses by expos-
ing BMDC1s to IFNα/β over 4 h and adding CD40 antibody for the last 15, 
30, 60, 120 or 180 min. Tnf, Cxcl16 and Cd83 increased after 30–60 min  
(Fig. 2a), which showed that BMDC1s responded rapidly to CD40 stimu-
lation if exposed to IFNα/β for ~2 h and suggested that BMDC1 need 
to be exposed to IFNα/β prior to CD40 stimulation IFNα/β conditions 
the dendritic cells (DCs) to become receptive to T cell help. We also 
tested this requirement in vivo using HSV-1 skin infection6. CD8+ cDC1s 
residing in the brachial lymph nodes of wild-type mice increased MHC 
class II expression 2 days after infection, but this increase was absent 
in Ifnar2–/– mice (Extended Data Fig. 1d). Because lack of CD4+ T cells 
does not impact MHC class II expression by CD8+ cDC1s in the brachial 
lymph nodes of wild-type mice infected 2 days earlier with HSV-1 on the 
skin6, these findings indicate that IFNα/β signals also need to precede 
CD40-mediated T cell help in vivo.

Next, we tested whether IFNα/β prepared DCs for T cell help 
by increasing CD40 expression7. IFNαA-stimulated and unstimu-
lated BMDC1s increased the expression of CD40 over time similarly 
(Extended Data Fig. 1e), indicating that surface CD40 expression 
was not rate limiting in these responses. To investigate whether the 
‘amplified’ and ‘combinatorial’ responses resulted from the effect 
of IFNα/β on the pathways downstream of CD40, we performed 
RNA-seq of BMDC1s stimulated with IFNαA for 4 h (BMDC1-IFN-αA) 
and compared gene expression to BMDC1s additionally stimulated 
with CD40 antibody for the last 15 min (BMDC1-IFNαA + CD40-15min) 
or 30 min (BMDC1-IFNαA + CD40-30min) or over the entire 4-h period 
(BMDC1-IFNαA + CD40-4h). Overall, BMDC1s changed expression of 
341 genes over the 15-min, 30-min and 4-h time points compared to 
BMDC1-IFNαA, BMDC1-CD40 or unstimulated BMDC1s (Fig. 2b). Unsu-
pervised self-organizing maps (SOMs) of these 341 genes identified 
smaller groups of genes appearing transiently at 15 min and 30 min (that 
is, Ifi44, Ifit3 and Fos), while different and larger sets of genes clustered 
at 4 h (that is, Cd83, Il15, Cxcl16, Il27 and Cd80) (Fig. 2c and Supplemen-
tary Table 2). General cellular processes, such as ‘enhanced survival’ and 
‘increased mRNA stability’, were enriched in BMDC1-IFNαA + CD40-
30min, while more specific responses, including ‘regulation of cytokine 
production’, characterized BMDC1-IFNαA + CD40-4h (Fig. 2d). We 
also performed coexpression analysis11 to identify similarly expressed 
groups of genes (‘modules’) independently of fold change cutoffs used 
to define differentially expressed genes across all time points (Fig. 2e 
and Supplementary Table 3). Genes in modules 1 and 3, such as Cxcl16 
and Tnf, responded to the combination of IFNαA and CD40 antibody at 
30 min and 4 h (Extended Data Fig. 2a). Modules 2 and 4 grouped genes 
that were induced by IFNαA (that is, Oasl1, Isg20 and Il2rg) or CD40 
antibody (that is, Cxcr4, Apol7c and Il12b), respectively, while modules 
5 and 6 contained genes with little responsiveness to either stimulation 
(that is, Itga3, Sox4 and Irak1) (Fig. 2e). These modules also differed in 
GO term enrichments (Fig. 2d). Together, these analyses indicate that 
IFNα/β changed how BMDC1s responded at the transcriptional level 
to CD40 stimulation.

IFNαA enable CD40 to activate p65, FOS and IRF1
Next, transcription factor binding motif prediction analysis of 
the‘amplified’ genes suggested the involvement of overlapping 
transcriptional regulators, including members of the IRF and STAT 
families (Fig. 3a). More specifically, BMDC1-IFNαA + CD40-30min and 
BMDC1-IFNαA + CD40-4h were enriched for binding sites for NF-κB, 
including NFKB1, REL, RELA (p65 subunit) and RELB (Fig. 3a). To test 
these predictions, we examined canonical and non-canonical NF-κB 

Here, we systematically dissected how APCs integrate stimulation 
through IFNα/β and CD40 from CD4+ T cells. We identified an iterative 
process whereby APCs require IFNα/β-dependent rewiring of the sign-
aling cascade downstream of CD40 that enables the subsequent parti-
tion of NF-κB-, IRF1- and FOS-dependent genes into distinct patterns 
of co-stimulatory molecule expression and mediator provision. This 
carefully sequenced integration process is critical for antiviral CD8+ 
T cell responses in a mouse virus infection model, and its activity in 
APCs from individuals infected with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) correlates with CD8+ T cell responses and 
milder forms of coronavirus disease 2019 (COVID-19).

Results
IFNα/β and CD40 induce distinct responses by dendritic cells
To dissect how APCs integrate signals from IFNα/β and CD40 stimula-
tion, we initially focused on type 1 conventional dendritic cells (cDC1s), 
known platforms for T cell help8,9. We exposed bone marrow-derived 
CD24hiCD11blo cDC1s (hereafter, BMDC1s) to IFNαA and an antibody 
that mimics T cell help by cross-linking CD406. RNA sequencing 
(RNA-seq) revealed that CD40 induced some changes in BMDC1s, but 
this response was limited compared to >1,000 differentially expressed 
(false discovery rate (FDR) > 0.05, 1.5-fold change) genes induced by 
IFNαA (Fig. 1a and Supplementary Table 1). Most IFN-stimulated genes 
(ISGs)10 remained unaffected by additional CD40 stimulation (Fig. 1a, 
‘CD40-unresponsive genes’). However, a subgroup of genes, which 
included Ccl4 and Il15, was further increased when IFNαA and CD40 
antibody were applied together (Fig. 1a, ‘amplified genes’). We also 
observed genes that could not be induced by either stimulus alone but 
were strongly increased in BMDC1s exposed to both IFNαA and CD40 
antibody (Fig. 1a, ‘combinatorial genes’). This response included Ccl5 
and Tnf and other genes with known roles in the interplay between APCs 
and T cells, such as Cd83 and Cxcl16 (Fig. 1a). We validated these distinct 
response patterns in separate experiments, focusing on interleukin-15 
(IL-15) and CCL4 as examples for the amplified response and tumor 
necrosis factor-alpha (TNF-α) and CCL5 for the combinatorial synergy 
between IFNαA and CD40 stimulation (Fig. 1b,c and Extended Data  
Fig. 1a). Comparable responses could also be elicited when CD40 syner-
gized with IFNβ (Extended Data Fig. 1b) or other innate stimuli, such as 
polyinosinic–polycytidylic acid (poly(I:C)), lipopolysaccharide (LPS) or 
cytosine–phosphate–guanine (CpG), which triggered Toll-like receptor 
3 (TLR3), TLR4 and TLR9, respectively (Extended Data Fig. 1c). These 
findings indicate that CD40 synergizes with various innate stimuli in 
inducing ‘amplified’ and ‘combinatorial’ responses in BMDC1s.

cDC1s require in vivo stimulation from both IFNα/β and CD4+ 
T cells through CD40 to ‘amplify’ their capacity to provide IL-15 to her-
pes simplex virus (HSV)-specific CD8+ T cells6. To investigate whether 
priming of HSV-specific CD8+ T cells requires mediators that can only be 
induced by the synergy between IFNα/β and CD40 (such as CXCL16 and 
CCL5), we transferred Cxcr6+/+ and Cxcr6–/– bone marrow cells into irra-
diated hosts and infected them 6–8 weeks later with HSV-1 on the skin. 
Seven days later, splenic HSV-specific Cxcr6–/– CD8+ T cells produced 
less IFNγ in response to ex vivo antigen restimulation than their Cxcr6+/+ 
counterparts (Fig. 1d). CCL5-competent transgenic HSV-specific CD8+ 
T cells transferred into Ccl5–/– mice also had a significant, albeit more 
subtle, defect in IFNγ production in response to ex vivo antigen res-
timulation compared to wild-type recipients of HSV-specific transgenic 
CD8+ T cells (Fig. 1e), indicating that multiple genes required stimula-
tion through both IFNα/β and CD40 for optimal helper-dependent 
DC–CD8+ T cell interactions in vivo.

IFNα/β change transcription downstream of CD40
Next, we tested whether IFNα/β and CD40 antibody acted concurrently 
or in sequence. To first investigate whether CD40 stimulation condi-
tioned a more efficient response of BMDC1s to IFNα/β, we stimulated 
BMDC1s with CD40 antibody for 4 h and added IFNαA for the last 15, 
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signaling cascades in the interplay between IFNαA and CD40 antibody. 
The induction of amplified genes (Il15 and Ccl4) and combinatorial 
genes (Tnf and Cxcl16) in BMDC1-IFNαA + CD40-4h was similar between 
Nfkb2−/− and wild-type BMDC1s (data not shown), indicating that the 
non-canonical NF-κB pathway was not required. BMDC1-IFNαA + CD40-
15min resulted in IκBα degradation and p65 phosphorylation (Fig. 3b 
and Extended Data Fig. 2c), and the NF-κB inhibitor ammonium pyr-
rolidinedithiocarbamate (PDTC)12 impaired the increased expression 
of Tnf and Ccl4 in BMDC1-IFNαA + CD40-4h (Fig. 3c). These findings 
highlight that IFNα/β conditioning enabled CD40 to trigger the canoni-
cal NF-κB pathway in BMDC1s.

The transcriptional regulator FOS was induced in 
BMDC1-IFNαA + CD40-15min compared to in BMDC1-IFNαA, 
BMDC1-CD40 and BMDC1-IFNαA + CD40-4h (Fig. 3d and Supple-
mentary Table 2). We therefore deleted FOS from FLT3L-propagated 
BMDCs using CRISPR–Cas9 and stimulated these cells for 4 h with 
IFNαA and CD40 antibody. Compared to non-targeting guide con-
trol (NTC) BMDCs, Il15ra and Il27, but not Cxcl16 or Nfkb2, were 
reduced in the absence of FOS (Fig. 3e). ERK13 and CD40 signaling14 
can activate FOS, and we found phosphorylated p38 and ERK in 
BMDC1-IFNαA + CD40-15min (Fig. 3f ). Inhibition of ERK by nim-
bolide prevented the increase in Ccl4 expression and partially 
reduced Tnf expression in BMDC1-IFNαA + CD40-4h compared to 
in BMDC1-IFNαA (Fig. 3c). Together, these findings indicate that 

IFNα/β conditioning enables CD40 to activate FOS, likely through 
activation of ERK and p38.

The ‘combinatorial’ genes induced by IFNα/β and CD40 antibody 
were enriched in IRF1 binding sites (Fig. 3g), and expression of Irf1 was 
increased in BMDC1-IFNαA + CD40-30min and BMDC1-IFNαA + CD40-
4h compared to in BMDC1-IFNαA (Fig. 3h). IRF1 binding signals were 
enriched in combinatorial genes in BMDC1-IFNαA + CD40-4h com-
pared to in BMDC1-NS, BMDC1-IFNαA and BMDC1-CD40, as revealed by 
cleavage under targets and tagmentation (CUT&TAG) analysis (Fig. 3i).  
Endogenous IRF1 was bound to the promoter region of Cxcl16 in 
BMDC1-IFNαA + CD40-4h but not in BMDC1-IFNαA, BMDC1-CD40 
or BMDC1-NS (Fig. 3j). Moreover, Irf1–/– BMDC1s did not induce the 
expression of Cxcl16 in response to 4 h of combined IFNα/β and CD40 
antibody stimulation (Fig. 3k), and transcription factor binding motifs 
in the vicinity of IRF1 binding sites were enriched for motifs recognized 
by p65 (Fig. 3l). Together, these findings show that IFNα/β conditioning 
enhances the capacity of cDC1s to degrade IκBα and phosphorylate 
p65, p38 and ERK downstream of CD40, thus enabling CD4+ T cells 
to induce p65-, IRF1- and FOS-dependent transcriptional programs.

Mild COVID-19 is associated with IFNα/β and CD40 synergy
Imbalances in IFNα/β provision15 and low-avidity CD4+ T cell responses16 
are associated with severe COVID-19 (refs. 17,18), while milder outcomes 
correlate with virus-specific CD8+ T cells18 and the ability of individuals 
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Fig. 1 | IFNα/β and CD40 induce distinct and combinatorial responses in 
cDC1s. a, Changes in gene expression of BMDC1s stimulated for 4 h with IFNαA 
(n = 6 independent experiments), CD40 antibody (Ab) (n = 3 independent 
experiments) or IFNαA + CD40 antibody (n = 3 independent experiments) 
compared to unstimulated BMDC1s (n = 6 independent experiments). 
Differentially expressed genes are displayed as heat maps after z-score 
transformation of counts per million (CPM). Statistical differences were assessed 
by one-way analysis of variance (ANOVA); FDR-adjusted P ≤ 0.05 and fold change 
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adjusted P values are indicated. d, IFNγ production after ex vivo antigen 
restimulation for 5 h by splenic wild-type (WT) and Cxcr6–/– HSV-1-specific CD8+  
T cells 10 days after HSV-1 skin infection of wild-type mice that were irradiated 
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(n ≥ 5 per experiment). e, IFNγ production after ex vivo antigen restimulation 
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three independent experiments (n ≥ 1 per experiment). Statistical significance 
between conditions in d and e was assessed by two-tailed Wilcoxon rank-sum 
test, and respective P values are indicated.

http://www.nature.com/natureimmunology


Nature Immunology | Volume 24 | June 2023 | 979–990 982

Article https://doi.org/10.1038/s41590-023-01517-x

to respond to CCL5 (ref. 19) and CXCL16 (ref. 20). To investigate the 
synergy between IFNα/β and CD40 during SARS-CoV-2 infection, we 
isolated CD14−HLA-DR+ DCs from the blood of individuals with COVID-
19 4 to 35 days after symptom onset21. This included mild to moderate 

disease (WHO (World Health Organization) score of 2–5) and severe dis-
ease (WHO score of 6–8) (Supplementary Table 7). CD14−HLA-DR+ DCs 
from individuals with severe disease had significantly reduced expres-
sion of MHC class II (HLA-DR) compared to CD14−HLA-DR+ DCs from 
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individuals with mild disease (Fig. 4a). A similar pattern was observed 
in CD14+CD11c+ monocytes, with a significant reduction in MHC class II 
expression compared to that observed in mild COVID-19 cases (Fig. 4a). 

To test whether IFNα/β signals contribute to MHC class II expression, 
we collected blood samples 4 to 35 days after symptom onset from 
individuals with COVID-19 who had developed neutralizing antibodies 
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against type I IFN (IFN-AAB)22. CD14−HLA-DR+ DCs and CD14+CD11c+ 
monocytes from IFN-AAB+ individuals had an even stronger reduction of 
MHC class II than observed in those from individuals with mild disease 
(Fig. 4a). The expression of CD40 on CD14−HLA-DR+ DCs in individuals 
with severe disease increased irrespective of IFN-AAB but was reduced 
in CD14+CD11c+ monocytes in individuals with IFN-AAB (Fig. 4a), sug-
gesting that IFNα/β regulate the ability of DCs and monocytes to receive 
T cell help through the expression of MHC class II5,23,24.

Next, we used published single-cell RNA-seq (scRNA-seq) data 
from individuals with COVID-19 (ref. 25) to examine the expression of 
the ‘CD40-unresponsive’, ‘amplified’ and ‘combinatorial’ gene signa-
tures identified above. This included peripheral blood mononuclear 
cells (PBMCs) from individuals with COVID-19 (mild, WHO score of 
3, n = 16; moderate, WHO score of 4–5, n = 11; severe, WHO score of 7, 
n = 23) collected within the first 25 days after symptom onset before 
availability of vaccination. These were compared to samples from 
healthy or otherwise hospitalized individuals who tested negative for 
SARS-CoV-2, were serologically negative or had no indication of acute 
COVID-19 disease based on clinical or laboratory parameters (HC; 
n = 13)25. We analyzed 31,736 classical monocytes and 722 myeloid DCs 
using reference-based cell-type annotation and clustering (Methods), 
referred to here as CD14+ monocytes and CD1C+ DCs, respectively. 
CD14+ monocytes from individuals with mild disease25 were signifi-
cantly enriched for the ‘amplified’ and ‘combinatorial’ responses (that 
is, CD83, CXCL16, NFKB2 and JUND) compared to CD14+ monocytes from 
individuals with moderate or severe disease or from healthy control 
individuals (Fig. 4b,c and Supplementary Table 5). Also, CD1C+ DCs from 
individuals with mild COVID-19 had increased transcription of genes of 
the ‘amplified’ and ‘combinatorial’ responses, such as CD83, EGR1 and 
REL, compared to CD1C+ DCs from individuals with severe COVID-19, 
which in turn had increased expression of CD40-unresponsive genes, 
such as IFIT3, MX1 and IRF7 (Fig. 4d and Supplementary Table 6). Similar 
patterns were observed in scRNA-seq data of a second cohort26, which 
included three individuals with moderate disease (respiratory symp-
toms and pneumonia), four individuals with severe disease (supple-
mental oxygen requirement) collected 2–16 days after symptom onset 
and five asymptomatic healthy control individuals from whom sam-
ples were collected before the widespread circulation of SARS-CoV-2 
(Extended Data Fig. 3a).

We also performed scRNA-seq on PBMC samples from the 
COVID-19 cohort above, which included IFN-AAB+ individuals22 

(Supplementary Table 7). CD14+ monocytes from IFN-AAB+ indi-
viduals had lower induction of prototypical ISGs, such as ISG15 and 
IFIT2, than CD14+ monocytes from healthy individuals and individuals 
with disease without IFN-AAB (Extended Data Fig. 3b). Furthermore, 
the expression of HLA-DRA, HLA-DRB1, TNF, CD83 and CCL4 was 
reduced in CD14+ monocytes from individuals with severe COVID-19  
and in IFN-AAB+ individuals compared to in healthy individuals 
and in individuals with COVID-19 without IFN-AAB (Extended Data 
Fig. 3b). To gain more robust insights into data distribution, we 
integrated our data with comparable published scRNA-seq data 
sets21,27,28, including a study examining four IFN-AAB+ individuals28. 
This yielded 179,012 single-cell CD14+ monocyte transcriptomes 
across 263 samples (HC, n = 39; WHO score of 1–3, mild, n = 79; WHO 
score of 4–5, moderate, n = 82; WHO score of 6–8, severe, n = 52; WHO 
score of 7–8, severe + IFN-AAB, n = 11). HLA-DRB1, CD83 and TNF were 
significantly reduced in individuals with COVID-19 with increasing 
disease severity, reaching a minimum in individuals with IFN-AAB 
(Extended Data Fig. 3b). Furthermore, the ‘amplified’ and ‘combina-
torial’ signatures were reduced in CD14+ monocytes from individuals 
with severe COVID-19, with and without IFN-AAB, compared to in 
CD14+ monocytes from individuals with mild disease (Extended Data 
Fig. 3c). Together, these findings indicate that IFNα/β signals are 
critical drivers of ‘amplified’ and ‘combinatorial’ responses during 
SARS-CoV-2 infection.

R e a n a l y s i s  o f  p u b l i s h e d  s i n g l e - c e l l  a s s a y  f o r 
transposase-accessible chromatin with sequencing (scATAC-seq) 
data sets29 from PBMCs of individuals with COVID-19 indicated that 
CD14+ monocytes from individuals with mild disease had signifi-
cantly increased accessibility of more than 300 genes, including 
IL15, CD83, TNF and CXCL16, compared to CD14+ monocytes from 
individuals with moderate and severe COVID-19 (Fig. 4e,f). Further-
more, Hallmark enrichment analysis of more accessible genes in 
CD14+ monocytes from individuals with mild COVID-19 compared 
to CD14+ monocytes from healthy control individuals identified 
‘IFNγ response’ and ‘TNF signaling via NF-κB’ as major pathways 
differentially regulated in mild COVID-19 (Fig. 4g). To investigate 
whether these responses can be elicited in vitro in human cDC1s, we 
differentiated human CD141+CADM1+CLEC9A+ cDC1s (hDC1s) from 
blood-derived CD34+ stem cells using FLT3L, stem cell factor and 
IL-4 (ref. 30) and stimulated them with human recombinant IFNα 
and human CD40 Ab separately or in combination for 18 h. hDC1s 

Fig. 4 | Combinatorial responses to IFNα/β and CD40 antibody by DCs 
and monocytes correlate with milder outcomes of COVID-19. a, HLA-DR 
expression of CD14+CD11c+ monocytes and CD14−HLA-DR+ DCs from individuals 
with COVID-19 with mild or moderate symptoms (WHO score of 2–5; n = 11) or 
severe disease with (WHO score of 6–8; n = 3–6) and without (n = 10) IFN-AAB. 
Data are displayed as box and whisker plots showing the median and the 25th  
and 75th percentiles and two whiskers at 1.5× the interquartile range (IQR) of  
the mean fluorescence intensity (MFI) and percentage of CD40+ cells.  
b, Single-sample gene set variation analysis (GSVA) of the ‘CD40-unresponsive’, 
‘amplified’ and ‘combinatorial’ gene signatures in scRNA-seq data from CD14+ 
monocytes and CD1C+ DCs from PBMCs of individuals with mild (WHO score of 
3; n = 16), moderate (WHO score of 4–5; n = 11) or severe (WHO score of 7; n = 23) 
COVID-19 and healthy control (HC) individuals (n = 13; reanalyzed from ref. 25). 
Box plots as in panel a. Data points are colored and shaped according to disease 
severity and stage based on days after onset of symptoms, respectively. Wilcoxon 
rank-sum test P values are shown. c, Gene set enrichment analysis plots (top) 
showing enrichment curves of the ‘amplified’ and ‘combinatorial’ signatures in 
the differentially expressed genes (two-sided Wilcoxon rank-sum test, minimum 
percentage = 0.1, log2(fold change) > 0.2) in CD14+ monocytes from mild 
compared to severe COVID-19 cases as in b. The log10(FDR P values)  
and the log2(fold change) values of the differentially expressed genes are 
shown as a volcano plot (bottom). Genes are colored according to the ‘CD40-
unresponsive’, ‘amplified’ or ‘combinatorial’ signature; Padj, adjusted P value.  

d, Differential expression of ‘CD40-unresponsive’, ‘amplified’ and ‘combinatorial’ 
signature genes in CD1C+ DCs from healthy control individuals and individuals 
with mild, moderate and severe cases of COVID-19, as in a, determined using a 
two-sided Wilcoxon rank-sum test. e, Heat map showing GeneScores for disease-
specific, significantly differentially accessible genes in scATAC-seq data of CD14+ 
monocytes from PBMC samples derived from individuals with mild (WHO score 
of 1–3; n = 7 samples), moderate (WHO score of 4–5; n = 4) or severe (WHO score 
of 6–7; n = 6) COVID-19 and healthy control individuals (n = 6; reanalyzed from 
ref. 29) determined using a two-sided Wilcoxon rank-sum test (FDR ≤ 0.01 and 
log2 (fold change) ≥ 0.58). f, Imputed GeneScores of IL15, CD83, CXCL16 and 
TNF in CD14+ monocytes grouped according to COVID-19 severity as in e. Data 
are displayed as violin plots with overlaying box and whisker plots showing the 
median and 25th and 75th percentiles and two whiskers at 1.5× IQR.  
g, Differentially accessible genes (FDR ≤ 0.01 and log2(fold change) ≥ 0.58) in 
CD14+ monocytes from individuals with mild COVID-19 compared to healthy 
control individuals, as in e, visualized as a volcano plot showing –log10(FDR) and 
log2(fold change) values (left) and the corresponding enriched Hallmark terms 
for the 789 genes with increased accessibility in mild COVID-19 CD14+ monocytes 
compared to healthy control monocytes displayed as dot plots showing gene 
counts and adjusted P values per term (right). h, Secretion of TNF in hDC1s 
stimulated with IFNα and/or CD40 antibody for 18 h. Data are mean ± s.e.m. 
from six donors. Statistical significance for differences between conditions was 
assessed by one-way ANOVA, and adjusted P values are indicated.
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secreted TNF in response to IFNα when aided by CD40 triggering, 
but not after treatment with IFNα alone (Fig. 4h). These observa-
tions indicated that APCs from individuals with mild, but not severe, 

COVID-19 had increased chromatin accessibility and transcription 
of genes requiring the synergy between IFNα/β and CD40 described 
in the mouse experiments.
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CD40 triggers NF-κB and FOS-dependent transcription in mild 
COVID-19
To explore whether IFNα/β also affected the signaling cascade down-
stream of CD40 in human APCs, we subjected the differentially 
expressed genes that were significantly higher in CD14+ monocytes 
from individuals with mild COVID-19 than in CD14+ monocytes from 
individuals with severe COVID-19 to enrichment analyses using the 
Hallmark database31 and transcription factor binding motifs32. There 
was a significant enrichment of genes associated with the NF-κB path-
way, including CD83, CD86, TNFAIP3, IL1B, DUSP2, NFKB2 and REL  
(Fig. 5a and Supplementary Table 5). We also observed preferential 
involvement of the NF-κB family (NFKB1, RELA and RELB) and the FOS 
and JUN families (AP-1; Fig. 5b). Visualization of the links between pre-
dicted transcription factors and their target genes within the differen-
tially expressed genes between mild and severe COVID-19 indicated a 
dense regulatory network controlled by NF-κB, FOS and JUN transcrip-
tion factors (Fig. 5b).

Similarly, transcription factor binding motif enrichment analyses 
in differentially accessible chromatin regions of CD14+ monocytes 
from individuals with mild or severe COVID-19 compared to those from 
healthy control individuals29 predicted members of the FOS family as 
key regulators (Fig. 5c). The enrichment score and number of acces-
sible target regions of the predicted transcription factors, including 
FRA1/FRA2, FOSL2 and JUN, were higher in CD14+ monocytes from 
individuals with mild COVID-19 than in CD14+ monocytes from individu-
als with severe COVID-19 (Fig. 5c,d). Furthermore, the top 10 predicted 
transcription factor binding motifs and motifs corresponding to IRF1 
and p65 (RELA) revealed large and distinct sets of target regions for the 
identified key regulator families among more accessible chromatin 
regions in CD14+ monocytes from mild COVID-19 cases than those from 
healthy control individuals. There were also substantially lower num-
bers of target regions with increased accessibility in CD14+ monocytes 
from individuals with severe COVID-19 than in CD14+ monocytes from 
healthy control individuals (Fig. 5d). These findings suggest that the 

amplified and combinatorial responses enriched in CD14+ monocytes 
in individuals with mild COVID-19 are regulated by signal integration 
through transcription factors of the NF-κB, FOS and JUN families.

Mild COVID-19 is associated with ‘helped’ CD8+ T cells
To test whether IFNα/β-dependent provision of T cell help to DCs 
and monocytes affects the CD8+ T cell response, we used the PBMC 
scRNA-seq data set from the cohort of individuals with COVID-19 
and healthy control individuals defined above (Fig. 4b). We analyzed 
11,734 CD8+ T cells using reference-based cell-type annotation and 
clustering (Methods) and compared their transcriptional profiles to 
published gene signatures that reflected CD8+ T cell priming in the 
presence (‘helped’) or absence (‘unhelped’) of CD4+ T cell help for 
DCs33. CD8+ T cells from individuals with moderate and severe COVID-
19 were enriched for ‘unhelped’ profiles (including CD200, CD200R1, 
BTLA, ID3 and PDCD1) compared to CD8+ T cells from individuals with 
mild COVID-19 (Fig. 6a,b). Clustering analysis further indicated that 
individuals with mild and moderate COVID-19 were enriched in CD8+ 
T cell subsets with transcriptional profiles (IL7R, TCF7, JUNB and JUND) 
indicative of early effector or activated memory T cells34,35 (Fig. 6c,d and 
Supplementary Table 8, cluster 3). CD8+ T cells with characteristics of 
terminal differentiation (CX3CR1 and ISG15, cluster 5) also dominated 
in individuals with severe COVID-19 (Fig. 6c,d) and had a reduction in 
‘helped’ signatures (that is, CD69, IL2RA and TNF) and a corresponding 
gain in the ‘unhelped’ signature (that is, IL6R, CD9, ISG15 and PDCD1) 
(Fig. 6e). We found comparable patterns in published scRNA-seq data 
from two other cohorts of individuals with COVID-19 (Extended Data 
Fig. 4a–c)36,37. We used cytometry by time of flight (CyTOF) to examine 
protein expression in CD8+ T cells from blood samples of 9 healthy 
control individuals and individuals with COVID-19 with mild (WHO 
score of 2–3; n = 25) or severe (WHO score of 7–8; n = 18) disease and 
IFN-AAB+ individuals with severe disease (WHO score of 7–8; n = 9)21 
collected 4 to 30 days after symptom onset (Supplementary Table 7). 
Dimensionality reduction using uniform manifold approximation and 

Fig. 5 | Enrichment of NF-κB- and FOS-dependent transcriptional responses 
in APCs from individuals with mild, but not severe, COVID-19. a, Differentially 
expressed genes between disease severities and stages in CD14+ monocytes 
representing the significantly enriched Hallmark terms ‘IFNγ response’, ‘IFNα 
response’ and ‘TNF signaling via NF-κB’, displayed as dot plots. b, RcisTarget 
transcription factor binding motif enrichment based on differentially expressed 
genes (two-tailed Wilcoxon rank-sum test, minimum percentage = 0.1, log2(fold 
change) > 0.2) in CD14+ monocytes from individuals with mild compared to severe 
COVID-19, as in Fig. 4a. Data are visualized as a dot plot (left) showing the number 
of enriched genes and the normalized enrichment score per motif. The inner circle 
(right) shows the enriched transcription factors for all differentially expressed 
(DE) genes, and the outer circle shows the respective target genes responsible 

for their enrichments. Transcription factors enriched for the genes overlapping 
with the ‘amplified’ and ‘combinatorial’ gene signatures and the target genes are 
colored in red. NES, normalized enrichment score. c, Transcription factor binding 
motif enrichment based on significantly differentially accessible peaks in CD14+ 
monocytes from individuals with mild or severe COVID-19 compared to CD14+ 
monocytes from healthy control individuals. Data are based on scATAC-seq data29 
and are displayed as dot plots showing FDR-adjusted P values of the enrichments 
and the number of target regions per transcription factor binding motif. d, Target 
regions of the top 10 highest enriched transcription factor binding motifs and 
motifs corresponding to IRF1 and p65 (RELA), shown as UpSet plots comparing 
the number of target regions.

Fig. 6 | Severe outcomes of COVID-19 are associated with ‘unhelped’ CD8+ 
T cells. a, UMAP visualization of scRNA-seq profiles of 11,734 CD8+ T cells 
from individuals with mild (WHO score of 3; n = 16), moderate (WHO score of 
4–5; n = 11) or severe (WHO score of 7; n = 23) COVID-19 and healthy control 
individuals (n = 13; reanalyzed from ref. 25). Cells are split and colored according 
to disease severity. b, GSVA of ‘helped’ and ‘unhelped’ T cell signatures derived 
from published gene expression33 profiles of mouse CD8+ T cells primed in the 
presence or absence of CD4+ T cells. Data are displayed as box and whisker plots 
showing the median and 25th and 75th percentiles and two whiskers at 1.5× IQR. 
Two-sided Wilcoxon rank-sum test P values are shown. c, UMAP of CD8+ T cells 
segregated into clusters 0–5 (left) and heat map of the respective proportionate 
cluster occupancy per disease severity (right) as in a. d, Expression of key genes 
associated with clusters 0–5 as in c. e, AUCell enrichment of genes derived 
from published gene expression33 profiles of mouse CD8+ T cells primed in the 
presence or absence of CD4+ T cells as in b, grouped according to the clustering 
as in c and displayed as violin plots of area under the curve (AUC) scores. FDR-

corrected Dunn’s multiple comparison test P values are indicated. f, UMAP 
visualization of CD8+ T cells from whole-blood samples from healthy control 
individuals (n = 10) and individuals with COVID-19 (mild, n = 22; severe, n = 21; 
severe with IFN-AAB, n = 9) analyzed by CyTOF. The rightmost plot shows the 
UMAP colored according to FlowSOM clustering, while the four plots on the left 
show the distribution of events across the groups. g, PCA analysis plot showing 
average PC1 and PC2 values for all the events per individual as in f, colored 
according to the sample group. Ellipses show an estimated region of group 
accumulation, arrows represent correlation of the respective marker with either 
of the PC axes, and arrow length represents correlation strength. h, Mean scaled 
signal intensities for KLRG1, CXCR3 and CD69 (left) and LAG3 (right) displayed as 
box and whisker plots showing the median and 25th and 75th percentiles and two 
whiskers at 1.5× IQR. i, Relative abundance of CD27−KLRG1+ cells in the total CD8+ 
T cell fraction displayed as box and whisker plots showing the median and the 
25th and 75th percentiles and two whiskers at 1.5× IQR. Statistics in h and i show 
two-sided Benjamini–Hochberg-corrected pairwise Wilcoxon P values.
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projection (UMAP) and clustering with the FlowSOM algorithm indi-
cated differences in the composition of CD8+ T cells between individuals 
with COVID-19 with different disease severity (Fig. 6f). Individuals with 

mild COVID-19 had increased proportions of CD27+CD8+ T cells with 
memory potential6 (Fig. 6f and Extended Data Fig. 4d,e, clusters 17, 19 
and 21), while individuals with severe COVID-19 had greater proportions 

a

e

H
el

pe
d 

si
gn

ifi
ca

nt
 A

U
C

 s
co

re
 

0.02

0.04

0.06

C0 C1 C2 C3 C4 C5

7.48 × 10–13

d

Percent expressed
25
50
75

SE
LL

IL
7R

C
D

69
FO

SL
2

KL
RG

1

G
ZM

K
G

ZM
B

ZE
B2

JU
N

B
JU

N
D

C
XC

R4
D

U
SP

1
D

U
SP

2
C

X3
C

R1
IS

G
15

IF
IT

3

C1

C2

C3

C4

C5

KL
RB

1

C0

UMAP 1

U
M

AP
 2

c

2,233 cells 5,619 cells 910 cells 2,972 cells

UMAP 1

U
M

AP
 2

10 20 30 40 50 60
%

C0

C1

C2

C3

C4

C5

U
M

AP
 2

f

UMAP 1

g

Average expression

–1.0
–0.5
0
0.5
1.0

b
18.96

55.28

23.07

27.45

30.96

2.93

24.35

10.30

23.92

30.42

27.02

16.37

25.68

29.85

31.36

27.31

23.06

18.27

31.00

4.57

21.65

14.82

18.96

62.43

C
on

tr
ol

M
ild

M
od

er
at

e

Se
ve

re

Moderate

HC
Mild

Severe

C0
C1
C2
C3
C4
C5

C0 C1 C2 C3 C4 C5

0.02

0.04

0.06

U
nh

el
pe

d 
si

gn
ifi

ca
nt

 A
U

C
 s

co
re

 

0

0.0015
0.0004

0.00014
0.32

0.68
0.54

–0.25

0

0.25

0.50

H
el

pe
d 

si
gn

ifi
ca

nt
 e

nr
ic

hm
en

t
sc

or
e

0.17
0.03

0.034
0.00049

0.00011
0.61

0

0.5

U
nh

el
pe

d 
si

gn
ifi

ca
nt

 e
nr

ic
hm

en
t

sc
or

e

Moderate

Stage
Control
Early (<day 10)
Late (>day 10)

HC
Mild

Severe

HC
Mild/moderate
Severe
Severe w/ IFN-AAB

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22

Clustering

HC
Mild/moderate
Severe
Severe w/ IFN-AAB

Mild/moderateMild/moderate
Severe
Severe w/ IFN-AAB

0

1

2

3

Ag
gr

eg
at

ed
 m

ea
n 

si
gn

al
in

te
ns

ity
 o

f
KL

RG
1, 

C
XC

R3
 a

nd
 C

D
69

0

0.5

1.0

1.5

2.0

2.5

Si
gn

al
 in

te
ns

ity
 o

f L
AG

3

i

0

25

50

75

100

Re
la

tiv
e 

ab
un

da
nc

e
C

D
27

– KL
RG

1+

ce
lls

 in
 to

ta
l C

D
8+  T

 c
el

ls
 (%

)

h Mild/moderate
Severe
Severe w/ IFN-AAB

0.045
0.0016

0.24

0.16
0.00069

0.23

0.066
0.011

0.92

KLRG1

CD27

CD95

CD28

CD62L

CD34

CD56

TIGIT
Lag3

CD226

ICOS
CD45RO

Ki67
HLADR CXCR3

PD1
CD137

–0.1

0

0.1

0.2

–0.1 0 0.1

PC1 (12.45%)

PC
2 

(1
1.6

2%
)

1.09 × 10–6

0.0007

7.22 × 10–27

4.21 × 10–41

3.14 × 10–108

http://www.nature.com/natureimmunology


Nature Immunology | Volume 24 | June 2023 | 979–990 989

Article https://doi.org/10.1038/s41590-023-01517-x

of CD27−KLRG1+CD8+ T cells (clusters 3 and 8) than healthy individuals 
or individuals with mild disease (Fig. 6f and Extended Data Fig. 4d,e). 
Principal component analysis (PCA) of CD8+ T cells from individuals 
with mild and severe COVID-19 identified the expression of CD27 and 
KLRG1 as distinct features of CD8+ T cells from individuals with mild and 
severe disease, respectively (Fig. 6g,i), and CD8+ T cells from individu-
als with severe disease were enriched for LAG3 (Fig. 6h), a molecule 
induced by priming with unhelped DCs33. These findings indicate that 
severe outcomes of COVID-19 are associated with unhelped phenotypes 
of CD8+ T cells.

Discussion
Our findings uncovered an iterative consolidation process, in which 
innate stimuli, such as IFNα/β or TLR agonists, determined broad 
response options in APCs, and CD4+ T cells subsequently partitioned 
these into distinct sets of co-stimulatory molecules, cytokines and 
chemokines through CD40L. Together, these consecutive signals 
endowed APCs with optimal capacities to orchestrate effective anti-
viral CD8+ T cell responses in mouse HSV-1 infections and during 
community-acquired SARS-CoV-2 infections, where effective con-
solidation of IFNα/β and CD40 signals in APCs correlated with milder 
outcomes of COVID-19.

The conditioning of APCs by IFNα/β to become receptive to 
T cell help involved increased expression of MHC class II and distinct 
changes in how the APCs responded to CD40 stimulation. The changes 
in CD40 responsiveness were not just a function of increased expres-
sion of CD40 alone8, as spontaneously matured CD40hi DCs in mice 
and CD40hi APCs in individuals with severe COVID-19 were unable to 
engage ‘helper’-dependent programs. Instead, the capacity to receive 
help depended on additional changes in the signaling cascade down-
stream of CD40. These endowed APCs with the capacity to rapidly 
engage a network of transcription factors, including p65, IRF1 and FOS, 
and likely others, such as JUN, to select a distinct group of genes that 
provide the DCs with optimal capacities to prime CD8+ T cells respond-
ing to antigen. Some of the transcription factors were directly regu-
lated by IFNα/β and CD40 stimulation, suggesting that conditioning 
also enhanced the availability of relevant transcription factors. These 
responses were not exclusive to the cooperation between IFNα/β and 
CD40, as similar patterns of CD40-dependent calibration also occurred 
in DCs stimulated through different TLRs. Together with increased 
chromatin accessibility at binding sites for the above-mentioned tran-
scription factors in promoter regions of key genes regulated through 
IFNα/β and CD40, our study revealed a multitude of transcriptional 
and post-translational changes as a functional basis for how innate 
cues condition APCs to become receptive to T cell help, thus ena-
bling CD4+ T cells to calibrate APCs for optimal stimulation of CD8+  
T cell responses.

We have investigated the relevance of these findings for antiviral 
CD8+ T cell immunity in a mouse model of HSV-1 skin infection and 
showed that optimal HSV-specific CD8+ T cell responses depended on 
contextual cues that require IFNα/β and NF-κB signal integration by 
DCs. Notably, we translated these experimental insights to individu-
als with SARS-CoV-2 infection and demonstrated that the consecutive 
activation of APCs by IFNα/β and CD4+ T cells played an important 
role in regulating how APCs orchestrate CD8+ T cell responses during 
COVID-19. This interpretation not only helps align a number of cur-
rently unlinked findings in COVID-19, such as an association of milder 
disease with effective provision of CXCL16 (ref. 20) and CCL5 (ref. 19), 
high-avidity CD4+ T cells16 and effective CD8+ T cell responses18, but 
also raises the prospect of ‘unhelped’ APCs launching too many termi-
nally differentiated CD8+ T cells that contribute to immunopathology 
in individuals with severe COVID-19. It is important to acknowledge 
limitations around our findings in individuals with COVID-19. Our 
study cannot discern if the observed failures in signal integration by 
APCs and preponderance of terminally differentiated CD8+ T cells are 

a ‘cause’ or ‘effect’ of severe COVID-19 or are more likely a complex 
combination of both. Moreover, it is possible that interindividual dif-
ferences in T cell antigen receptor epitopes, precursor frequencies of 
antigen-specific CD8+ T cells and a great number of many other covari-
ates (that is, age, gender and comorbidities) influence the interaction 
between APCs and CD8+ T cells in individuals with COVID-19. However, 
having validated our findings across multiple unrelated clinical data 
sets, it is unlikely that our findings simply represent the confounding 
effects of any one of these covariates. We likely also missed some of 
the more nuanced aspects of the interaction between APCs and naive 
CD8+ T cells that take place in lymph nodes before symptom onset, 
which are difficult to capture as the precise time point of infection is 
unknown in community-acquired infections, and lymph nodes are not 
as amenable as blood for routine sampling, especially in individuals 
with mild disease.

Collectively, our findings demonstrate the reliance of antiviral 
immunity on a step-wise, carefully orchestrated consolidation process, 
whereby APCs combine and integrate innate signals and, after selection 
by CD4+ T cells, produce a discrete set of co-stimulatory molecules and 
soluble mediators that adapt responding CD8+ T cells to the specific 
challenge. In showing how innate and adaptive signals cooperate to par-
tition tailored responses from multiple broad and overlapping innate 
pathways and demonstrating functional relevance of these processes 
in mouse and human virus infections, our study provides critical new 
insights into how the host mounts effective antiviral immunity.
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(Mm00469712_m1), Gapdh (Mm99999915_g1), Hprt (Mm00446968_
m1), Il15 (Mm00434210_m1), Il15ra (Mm04336046_m1), Il27 
(Mm00461162_m1), Irf1 (Mm01288580_m1), Nfkb2 (Mm00479807_m1), 
Rela (Mm00501346_m1), Relb (Mm00485664_m1), Tnf (Mm00443258_
m1) and Traf6 (Mm00493836_m1).

RNA-seq and data analysis
Gene expression changes were investigated using RNA-seq. Up to 
100 ng of total RNA was used for library preparation, according to the 
manufacturer’s protocol, and was either sequenced in a 125-base pair 
(bp) paired-end run on a HiSeq HT sequencer (Illumina) or in a 50-bp 
single-read QuantSeq 3′-mRNA (Lexogen) run. Reads were aligned 
against the mouse genome mm10 by STAR v2.5.3a. Gene quantifica-
tion was performed via the E/M algorithm in PartekFlow (v8.0.19.0707) 
and normalized as CPM. Genes with a mean expression of ≤1 CPM 
under all conditions were excluded from further analysis, resulting in 
10,222 present genes for ANOVA in the Partek Genomics Suite (PGS, 
v7.18.0402). Genes with a fold change of 1.5 and an FDR-adjusted  
P value of ≤0.05 were defined as differentially expressed between two 
tested conditions. GO enrichment for the modules was performed 
using DAVID39 with the GOTERM_BP_DIRECT annotation. GO terms 
were filtered by unadjusted P ≤ 0.05 and visualized using ggplot2. 
Biological interpretation of differentially expressed genes was per-
formed with the following tools. Gene set enrichment analysis was 
performed using the GSEA application (v4.0.3) and the Hallmark gene 
set published by the Broad Institute. Enrichments were plotted using 
ggplot2 (v3.3.3)40. Cytoscape was used to visualize enriched GO terms 
as a network with the two plugins BiNGO (v3.0.3) and EnrichmentMap 
(v3.2.1). WordCloud plugin (v3.1.3) was used to visualize the most fre-
quent annotation associated within a cluster of GO terms. All present 
genes were used as input for a WGCNA, performed using the WGCNA 
R package (v1.70-3), to identify correlations of gene expression within 
the data set in an unbiased approach. The β-value was set at 23. For the 
module dissimilarity, a threshold of 0.42 was chosen, and the minimal 
cluster size was set to 30 genes. The prediction of transcription factor 
binding motifs was performed using the Cytoscape plugin iRegulon 
(v1.3) with a minimum normalized enrichment score of 3 and a maxi-
mum FDR on motif similarity of 0.001. All potential transcription fac-
tors annotated to the enriched binding motifs were used in the Venn 
diagram to illustrate their overlaps.

CUT&Tag and analysis
The CUT&Tag experiments were performed as previously described41 
with a hyperactive in situ ChIP library prep kit purchased from Epicy-
pher (CUTANA CUT&Tag Assays) following the manufacturer’s recom-
mendations. A minimum of 1 × 105 stimulated BMDC1s were bound to 
activated concanavalin A-coated magnetic beads and were subjected 
to immunoprecipitation with 0.5 µg of primary antibody (anti-IRF1, 
D5E4, Cell Signaling Technology; rabbit anti-mouse IgG control). Immu-
noprecipitated DNA was amplified with high-fidelity 2× PCR mix (Epi-
cypher) using universal barcodes i5 and uniquely barcoded i7 primers 
and 21 cycles. PCR products were purified with AMPure XP beads and 
eluted in water. Libraries were sequenced on an Illumina NextSeq 
platform, and 150-bp paired-end reads were generated. Fastq reads 
for each sample were aligned to the mm39 reference genome using 
bwa (v0.7.17). PCR duplicates were removed using picard tools’ Mark-
Duplicates (v2.25.0), and peaks were called using macs2 (v2.2.7.1) with 
the ‘—nomodel’ parameter. To establish consensus peaks between all 
conditions, peak sets were merged using homer’s mergePeaks (v4.11.1), 
and reads in consensus peaks were counted for each replicate using 
subread’s featureCounts (v2.0.0). PCA plots were generated using  
R (v4.1) and the prcomp function. Differentially occupied peaks were 
established using the limma package (v3.46.0) and its voom, lmFit 
and eBayes functions. Motif occupancy at peaks was established with 
homer and the findMotifsGenome function (v4.11.1).

Methods
Mice
C57BL/6, Ccl5–/–, Cxcr6–/–, Ifnar2–/–, Irf1–/– and CD45.1+ gBT-I mice were 
bred and maintained at the animal facility of the Department of Micro-
biology and Immunology, The University of Melbourne. All animal 
experiments were approved by The University of Melbourne Animal 
Ethics Committee.

Human samples
This study includes a subset of individuals enrolled between March 
2020 and April 2021 in the Pa-COVID-19 study, a prospective obser-
vational cohort study assessing pathophysiology and clinical charac-
teristics of individuals with COVID-19 at Charité Universitätsmedizin, 
Berlin38. The study was approved by the Institutional Review board of 
Charité (EA2/066/20). Written informed consent was provided by all 
individuals or legal representatives for participation in the study. Spe-
cifics about the participants per application (flow cytometry, CyTOF 
and scRNA-seq), including COVID-19 status, time point of sampling 
after onset of symptoms, sex, age and outcome, are listed in Supple-
mentary Table 7 and are described elsewhere21,22. Human umbilical 
cord blood was obtained with written informed consent from the 
Queensland Cord Blood Bank and approval from the Mater Human 
Research Ethics Committee (HREC13/MHS/86).

In vitro generation of BMDC1s
Single-cell suspensions from mouse bone marrow were cultured 
with FLT3L to generate BMDCs6. Red blood cells were removed using 
1 ml of red blood cell lysis buffer (Sigma-Aldrich) per mouse for 90 s. 
Cells were cultured at 1.5 × 106 cells per ml in complete medium sup-
plemented with 1.32 mM l-glutamine, 10% fetal calf serum, 90 µM 
β-mercaptoethanol, 100 U ml–1 penicillin, 0.2 g liter–1 streptomycin 
and 150 ng ml–1 FLT3L (BioXCell). Following 8 days of culture at 37 °C, 
cells were stained for 30 min on ice with CD45R/B220 (RA3-6B2), 
SIRPα (P84), CD11c (N418), CD11b (M1/70), I-A/E (M5114) and CD24 
(M1/69) antibodies. cDC1 or CD8+ DC equivalents were identified by 
CD24highSIRPαlowCD11blowCD45R/B220− and were sorted using a FACS 
Aria III (BD Biosciences). Following sorting, BMDC1s were washed and 
resuspended before stimulation. Stimulation was performed on bulk 
BMDCs or sorted BMDC1s with IFNαA (PBL; 1,000 U ml–1), IFNβ (R&D 
Systems; 1 µg ml–1), LPS (Sigma-Aldrich; 10 µg ml–1), CpG (1668, Gene-
Works; 1.6 nmol ml–1) or poly(I:C) (InvivoGen; 10 µg ml–1) in the pres-
ence or absence of monoclonal antibody to CD40 (CD40 Ab; FGK45.5, 
Miltenyi Biotec; 10 µg ml–1). Cells and supernatants were collected at 
different time points thereafter. Pharmacological inhibition of NF-κB 
and ERK pathways was achieved with 1 h pretreatment using PDTC 
(ab141406, 10 µM) and nimbolide (ab142138, 10 µM), respectively.

Cytokine and chemokine determination
Supernatants were subjected to BD Cytometric Bead Array measure-
ment of CCL4 (limit of detection of 4.88 pg ml–1), CCL5 (limit of detec-
tion of 1.22 or 4.88 pg ml–1) and TNF-α (limit of detection of 39.07 or 
9.7 pg ml–1), according to the manufacturer’s instructions. Samples 
were assessed using an LSRFortessa and FACS Diva software 6.1.3, and 
all concentrations were determined relative to a standard curve.

Real-time PCR
Cells were resuspended in TRIzol (Life Technologies), and mRNA was 
extracted using a Direct-zol RNA MicroPrep kit (Zymo Research) fol-
lowing the manufacturer’s instructions. cDNA was synthesized with an 
Omniscript RT kit for reverse transcription (Qiagen) using oligo(dT) 
primers (Promega) and RNaseOUT recombinant ribonuclease inhibitor 
(Thermo Fisher Scientific). Real-time PCR was performed with Taqman 
Universal PCR master mix (Life Technologies) with primers/probes for 
18S (Mm03928990_g1), B2m (Mm00437762_m1), Ccl4 (Mm00443111_
m1), Ccl5 (Mm01302427_m1), Cd83 (Mm00486868_m1), Cxcl16 
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Immunoblotting
BMDC1s were lysed in resuspension with RIPA buffer containing 50 mM 
Tris-HCl (pH 8), 150 mM sodium chloride, 1% NP-40, 0.5% sodium deoxy-
cholate and 0.1% SDS (Sigma-Aldrich) supplemented with PhosSTOP 
phosphatase inhibitor cocktail tablets (Roche) and cOmplete protease 
inhibitor cocktail tablets (Roche). Cell lysates were rotated at 4 °C 
for 30 min and clarified at 4 °C at 13,000g for 10 min. Proteins were 
denatured for 5 min at 90 °C with sample buffer containing 350 mM 
Tris-HCl (pH 6.8–5), 5% β-mercaptoethanol, 10% SDS, 36% glycerol 
and 0.0012% bromophenol blue. Proteins were then separated using 
NuPAGE 4–12% Bis-Tris gels (Thermo Fisher Scientific). Proteins were 
transferred onto nitrocellulose membranes (Bio-Rad) and blocked 
for 30 min with either 5% milk or 5% bovine serum albumin (BSA; for 
phosphorylated proteins) in PBS or TBS (for phosphorylated proteins) 
with 0.1% Tween 20. The following primary antibodies were used: 
rabbit anti-NF-κB p65 (D14E12), mouse anti-phospho S536 NF-κB p65 
(7F1), rabbit anti-IκBα (44D4) and rabbit anti-β-actin (13E5), all pur-
chased from Cell Signaling Technology. Membranes were incubated 
with horseradish peroxidase-conjugated secondary antibodies goat 
anti-rabbit IgG and horse anti-mouse IgG (Cell Signaling Technology) 
and subsequently with a Novex ECL chemiluminescent substrate rea-
gent kit before imaging. Quantitative analysis of the signal intensity 
was performed using ImageJ software.

PhosFlow cytometry
Following in vitro stimulation of BMDCs, 100 µl of warm PhosFlow 
Lyse/Fix Buffer (BD Biosciences) was directly added to the samples 
and incubated for 10 min at 37 °C. Samples were then resuspended in 
PhosFlow Perm Buffer III (BD Biosciences) and incubated for 30 min on 
ice. After being washed twice, samples were stained for 1 h at room tem-
perature with the antibodies described above supplemented with anti-
body to phospho-P44/42 MAPK (ERK1/ERK2; Thr 202/Tyr 204; 197G2; 
Cell Signaling Technology) and phospho-p38 MAPK (Thr 180/Tyr 182; 
4NIT4KK; Thermo Fisher Scientific). A Biosciences Cytek Aurora was 
used for the measurement of samples, and FlowJo software (TreeStar) 
was used for analysis.

CRISPR–Cas9 gene editing
Freshly isolated bone marrow precursors were edited via electropo-
ration before culture with FLT3L, as described previously42. In brief, 
per 10 × 106 mouse bone marrow precursors to be electroporated, 
61 pmol of Cas9 nuclease (IDT) and 300 pmol of sgRNA (Synthego) were 
combined and incubated for 10 min at room temperature, generating 
Cas9–sgRNA ribonucleoprotein complex. Bone marrow precursors 
(10 × 106) were then washed with 1× PBS twice and resuspended in 20 µl 
of P3 buffer (Lonza) combined with the Cas9–sgRNA complex and elec-
troporated using 4D-Nucleofector (Lonza) using the pulse code CM-137. 
Prewarmed medium was immediately added in electroporation wells 
to allow cells to recover for 10 min at 37 °C. Cells were subsequently 
cultured for 8 days in complete medium supplemented with FLT3L, 
as described above. sgRNA sequences used were Fos (UAGUGCCAAC-
UUUAUCCCCA) and NTC (GCACUACCAGAGCUAACUCA).

Virus infection and viral titers
HSV-1 KOS was grown using Vero cells (CSL). Mice were epicutane-
ously infected with 106 plaque-forming units of HSV-1, as previously 
described6.

Flow cytometry analysis of in vivo HSV-1 responses
Endogenous HSV-specific CD8+ T cells were analyzed using 
H-2Kb-restricted gB498–505-specific tetramers, as previously described6. 
In some experiments, Ccl5−/− and wild-type mice were transferred 
with 50,000 naive HSV-specific CD8+ T cells (gBT-I cells) before infec-
tion, and their expansion was measured 10 days later in the spleen, 
as described previously6. IFNγ production in gB498–505-specific CD8+ 

T cells was measured after restimulation for 5 h ex vivo in the presence 
of brefeldin A. Single-cell suspensions were stained with antibodies 
to CD16/CD32 (2.4G2, Fc block), CD8 (53-6.7), CD44 (IM7), CD45.2 
(104) and CD3 (145-2C11) and, when necessary, with either CD45.1 
monoclonal antibody (A20) or tetramer staining. After fixation and 
permeabilization with BD Cytofix/Cytoperm (BD Biosciences), cells 
were stained for 20 min at room temperature with antibodies to IFNγ 
(XMG1.2) in BD Perm/Wash buffer (BD Biosciences) before analysis on a 
flow cytometer. Dead cells were excluded by using a LIVE/DEAD fixable 
dead cell stain kit (Thermo Fisher Scientific). A BD LSRFortessa and a 
FACS Diva or Biosciences Cytek Aurora and SpectroFlo were used for 
measurement of samples, and FlowJo software (TreeStar) was used for 
analysis. In some experiments, CD8+ DCs from wild-type versus Ifnar2−/− 
mice were analyzed in the brachial lymph node 2 days after HSV-1 skin 
infection, as previously described6. Cells were stained with antibodies 
to CD11c (N418), CD8 (53-6.7), CD3 (145-2C11, BD Biosciences), CD19 
(1D3), NK1.1 (PK136) and IA/E (2G9), and CD8+ DCs were then processed 
on an analytic flow cytometer (LSRFortessa BD Biosciences).

BM chimeras
Mixed chimeras were generated as previously described6. C57BL/6 mice 
were lethally irradiated with 2 × 550 cGy and were reconstituted with a 
total of 5 × 106 bone marrow cells, previously depleted for T cells, from 
Cxcr6−/− and wild-type mice in a 1:1 ratio.

scRNA-seq data generation and analysis
scRNA-seq data of PBMCs from individuals with COVID-19 and healthy 
control individuals collected from April to July 2020 in Bonn, Germany, 
were used, as previously reported26. Samples were classified by disease 
severity according to the WHO ordinal scale (WHO score of 3, mild; 
WHO score of 4–5, moderate; WHO score of 7, severe) and by the time 
after onset of first symptoms (early: days 0–10, late: >day 11) at the 
date of sampling. Details about sample procurement and processing, 
sequencing and data analysis have been previously described25, and 
an extensive description of the protocol has also been published43. 
Processed and annotated scRNA-seq data25 were used as published 
previously and are available at https://beta.fastgenomics.org/p/
schulte-schrepping_covid19. The data were imported into R version 
4.0.3 and were mainly analyzed using Seurat v3.9.9.

Subset analysis of DCs and monocytes
PBMCs were subjected to Seurat v4 reference mapping following the 
developer vignette (satijalab.org/seurat/articles/multimodal_refer-
ence_mapping.html) using the multimodal PBMC reference data set44. 
Only those cells classified as DC or monocyte subsets were selected 
to remove any possible cellular contaminations in the data set. Sub-
sequently, the remaining 37,100 cells were reclustered after scaling 
and regressing for unique molecular identifier (UMI) count per cell, 
identification of variable genes and PCA in this cellular subspace using 
the Louvain algorithm with a resolution of 0.2 based on the first 10 
PCs. Clusters representing DCs or classical CD14+ monocytes were 
then subsetted, respectively, and the resulting 31,736 monocytes and 
722 DCs were analyzed in detail, including rescaling, identification 
of variable genes, PCA and subsequent UMAP based on the first 10 
PCs. Disease severity-specific marker gene analysis was performed 
using the Wilcoxon rank-sum test with the following cutoffs: genes 
had to be expressed in more than 10% of the cells of the respective 
condition and exceed a logarithmic fold change cutoff of at least 0.2. 
Before dot plot visualization and functional enrichment analyses, 
sets of differentially expressed genes were filtered for ribosomal 
protein-coding genes (RPL/RPS), mitochondrial genes (MT-) and hemo-
globin genes (HBA1, HBA2 and HBB). Hallmark enrichment analysis of 
differentially expressed gene sets was performed using the Hallmark 
v7.3 database and the enricher function implemented in the R pack-
age clusterProfiler v3.18.0 (ref. 45). Gene set enrichment analyses of 
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‘CD40-unresponsive’, ‘amplified’ and ‘combinatorial’ gene signatures 
in the differentially expressed genes in monocytes from individuals 
with mild COVID-19 compared to those from individuals with severe 
disease were performed using the fgsea package v1.16.0. Single-sample 
GSVA using the ‘CD40-unresponsive’, ‘amplified’ and ‘combinato-
rial’ signatures derived from the mouse bulk RNA-seq analysis of this 
study was performed using GSVA v1.38.2 (ref. 46). For this, aggregated 
expression values of all cells of each sample were calculated using the 
AggregateExpression function in Seurat and were used as input for the 
sample-specific analysis. Of note, the IFNαA response signature was 
intersected with the top 100 IFN-response genes derived from an inte-
grated analysis of eight microarray data sets on IFN response of myeloid 
cells listed in the Interferome database (http://www.interferome.org/)10 
ranked by their combined log2(fold change) values to reduce the signa-
ture to a length comparable to the amplified and combinatorial signa-
tures. Transcription factor binding motif enrichment analysis based on 
the significantly differentially expressed genes in monocytes derived 
from individuals with mild COVID-19 compared to cells from individu-
als with severe disease and those differentially expressed genes that 
intersected with the ‘amplified’ and ‘combinatorial’ gene signatures 
was performed using RcisTarget32, the hg38__refseq-r80__10kb_up_
and_down_tss.mc9nr.feather database and a normalized enrichment 
score threshold of 4. Enriched transcription factor binding motifs were 
filtered for the transfac_pro, cisbp and swissregulon databases and 
those motifs with high-confidence transcription factor annotation 
(TF_highConf). A network linking enriched target genes and predicted 
transcriptional regulators based on the Rcistarget transcription factor 
binding motif enrichment results was constructed and visualized in a 
circular layout using Cytoscape v3.7.1.

scRNA-seq analysis of CD14+ monocytes from individuals with 
IFN-AAB and corresponding healthy individuals
PBMC scRNA-seq data were produced from five control samples, five 
samples from individuals with moderate COVID-19, five samples from 
individuals with severe COVID-19 and seven samples from individuals 
with severe COVID-19 with IFN-AAB, which were tested for each indi-
vidual in virus neutralization assays described in Akbil et al.22. On the 
day of the experiment, frozen live PBMCs were thawed in prewarmed 
medium (RPMI 1640 (Gibco), 2% fetal calf serum (Sigma) and 0.01% 
Pierce Universal Nuclease (Thermo Fisher)). The PBMCs were then 
labeled with 0.5 µg of TotalSeq-C hashtag antibodies (Biolegend) in 
DPBS supplemented with 0.5% BSA and 2 mM EDTA for 30 min at 4 °C 
and washed at least three times with DPBS + 1% BSA. Subsequently, the 
PBMCs were counted, and up to seven different samples were pooled 
in equal proportions. The resulting cell pool was filtered through a 
40-µm mesh (Flowmi Cell Strainer, Merck) and super loaded with 
50,000 cells per lane in the Chromium Controller for partitioning 
single cells into nanoliter-scale Gel Bead-In-Emulsions (GEMs). For 
reverse transcription, cDNA amplification and library construction 
of the gene expression libraries, the Chromium Next GEM Single Cell 
kit 5′ v2 (10x Genomics) was used. The Chromium Single Cell 5′ Feature 
Barcode Library kit (10x Genomics) was used for preparing additional 
hashtag libraries. All libraries were prepared according to the proto-
cols provided by 10x Genomics, quantified by Qubit Flex fluorometer 
(Thermo Fisher) and quality checked using the 4150 TapeStation sys-
tem. Sequencing was performed in paired-end mode (R1 26 cycles, 
R2 90 cycles) on a NovaSeq 6000 (Illumina) with a NovaSeq 6000 S2 
reagent kit (100 cycles). After demultiplexing, raw sequencing data 
were processed with CellRanger v5 and aligned against the GRCh38 
reference, including TotalSeq-C hashtag barcodes. scRNA-seq UMI 
count matrices were imported into R 4.0.3, and gene expression data 
analysis was performed using the R/Seurat package 3.9.9. Cells from 
pooled samples were demultiplexed using a combination of HTODe-
mux implemented in Seurat and vireo (v0.5.6)47 after scoring common 
variants from the 1000Genomes project with cellsnp-lite (v1.2.0)48. 

Events classified as ‘negative’ and ‘doublet’ by the HTODemux algo-
rithm were assigned an ID via vireo classification. Subsequently, cells 
were filtered by number of features (over 200 and less than 5,000), 
percentage of mitochondrial genes (<10% mitochondrial UMIs) and 
number of counts per cell (<20,000) to exclude debris and doublets. 
Gene expression values were normalized by total UMI counts per cell, 
multiplied by 10,000 (TP10K) and log transformed by log10 (TP10k + 1). 
For cell-type annotation, cells were subjected to Seurat v4 reference 
mapping following the developer vignette using the multimodal PBMC 
reference data set44. Cells classified as CD14+ classical monocytes were 
selected and reclustered after scaling and identification of variable 
genes using vst and PCA using the Louvain algorithm with a resolu-
tion of 0.2 based on the first 10 PCs. A cluster characterized by the 
expression of T cell marker genes was removed to exclude potential 
T cell contamination in the CD14+ monocyte subset. Averaged gene 
expression values per sample of selected key genes were visualized as 
box plots across disease severity groups.

To increase the number of samples per severity group, scRNA-seq 
data of PBMCs from other COVID-19 cohorts produced using the same 
scRNA-seq protocol (10x Genomics, 5′) by us21 and others27,28 were 
included in the analysis and processed as described above. The total 
number of samples combined in this analysis was 263. All samples were 
grouped according to their WHO ordinal scale classification into mild 
(WHO score of 1–3), moderate (WHO score of 4–5) and severe (WHO 
score of 6–8) COVID-19 disease. In addition, samples known to be 
derived from individuals with IFN-AAB were subgrouped accordingly. 
PBMC scRNA-seq data from Van der Wijst et al.28 were downloaded 
and filtered for the earliest sample available per donor, resulting in 
11 control samples and 35 samples from individuals with moderate 
COVID-19, 26 samples from individuals with severe COVID-19 and 4 
samples from individuals with severe COVID-19 with IFN-AAB. PBMC 
scRNA-seq data from Su et al.27 were downloaded and filtered for the 
earliest sample available per donor, resulting in 17 control samples 
and 69 samples from individuals with mild COVID-19, 45 samples from 
individuals with moderate COVID-19 and 15 samples from individu-
als with severe COVID-19. PBMC scRNA-seq data from Georg et al.21 
included six control samples, five samples from individuals with mild 
COVID-19, two samples from individuals with moderate COVID-19 and 
six samples from individuals with severe COVID-19. Single-sample 
GSVA using the ‘CD40-unresponsive’, ‘amplified’ and ‘combinatorial’ 
signatures derived from the mouse bulk RNA-seq analysis of this study 
was performed using GSVA v1.38.2.

For validation, we additionally analyzed scRNA-seq data from DCs 
from PBMC data enriched for DCs as previously published26. After down-
loading the respective data from the public domain, we selected those 
cells originally classified as monocytes and DCs and followed the same 
procedure of filtering the cells using the Seurat v4 reference mapping 
approach, as outlined above. Differential gene expression analyses and 
signature enrichment analyses of the ‘CD40-unresponsive’, ‘amplified’ 
and ‘combinatorial’ signatures were performed as described above.

Subset analysis of CD8+ T cells
For detailed analysis of the CD8+ T cell compartment, cells classified 
as T cells according to the original annotation provided were selected 
from the PBMC data set. These cells were subjected to Seurat v4 refer-
ence mapping following the developer vignette (satijalab.org/seurat/
articles/multimodal_reference_mapping.html) using the multimodal 
PBMC reference data set44. Only those cells classified as T cells were 
selected to remove any possible cellular contaminations in the T cell 
data set. Subsequently, the remaining 45,516 cells were reclustered after 
scaling, regressing for UMI count per cell, identification of variable 
genes and PCA in this cellular subspace using the Louvain algorithm 
with a resolution of 0.2 based on the first 10 PCs. Cluster 1, represent-
ing CD8+ T cells, was then subsetted, and the resulting 12,386 cells 
were analyzed in detail, including rescaling, identification of variable 
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genes, PCA and subsequent UMAP49 based on the first 10 PCs. Riboso-
mal protein-coding genes (RPL/RPS), mitochondrial genes (MT-) and 
hemoglobin genes (HBA1, HBA2 and HBB) were excluded from the set of 
variable features to remove potential sources of technical differences. 
Single-sample GSVA using the ‘helped’ and ‘unhelped’ T cell signatures 
derived from RNA-seq analysis of CD8+ T cells primed in the presence 
or absence of CD4+ T cell responses was performed using GSVA v1.38.2. 
For this, aggregated expression values of all CD8+ T cells of each sample 
were calculated using the AggregateExpression function in Seurat and 
were used as input for the sample-specific analysis. Clustering of the 
CD8+ T cells was performed using the Louvain algorithm with a reso-
lution of 0.4 based on the first 10 PCs, and cells identified as γδT cells 
were removed. To investigate proportional cluster occupancy per 
disease severity, cell counts per condition were normalized before 
calculation of per-cluster percentages. Single-cell gene set enrichment 
analysis across cells of each CD8+ T cell subcluster using the ‘helped’ 
and ‘unhelped’ T cell signatures derived from RNA-seq analysis of CD8+ 
T cells primed in the presence or absence of CD4+ T cell responses was 
performed using AUCell v1.12.0 (ref. 32). For validation, we analyzed 
CD8+ T cells from two other data sets36,37. After downloading the respec-
tive data from the public domain, we followed the same procedure of 
filtering the cells using the Seurat v4 reference mapping approach and 
performed signature enrichment analysis using the above-mentioned 
T cell signatures.

Analysis of scATAC-seq data
scATAC-seq data of PBMCs from individuals with COVID-19 and healthy 
individuals produced using a Chromium Next GEM Single Cell ATAC 
reagent kit version 1.1 (10x Genomics, PN-1000175) was used, as pre-
viously published29. Processed and annotated scATAC-seq data from 
Wilk et al.29 were downloaded from Gene Expression Omnibus (GEO) 
under accession number GSE174072 and https://github.com/ajwilk/
COVID_scMultiome and were imported to R version 4.1.0. After creation 
of Arrow files and a respective ArchRproject using the R package ArchR 
version 1.0.1 (ref. 50), the resulting single-cell data were filtered based 
on the published cell annotation and subsetted to CD14+ monocytes. 
Imputation weights on GeneScores were calculated using MAGIC51 
implemented in ArchR’s addImputeWeights function. Severity-specific 
accessible genes were identified using the Wilcoxon rank-sum test com-
paring gene scores of monocytes from individuals with mild COVID-19 
to cells from control donors with the following cutoffs: FDR ≤ 0.05 
and log2(fold change) ≥ 0.58. Hallmark enrichment analyses were per-
formed using clusterProfiler version 4.0.5 and the Hallmark gene set 
v6.2. After generation of pseudo-bulk replicates across cells of each 
COVID-19 severity group, peaks were called using MACS3 (ref. 52) and 
annotated using ChIPseeker version 1.28.3 (ref. 53). Subsequently, 
transcription factor binding motifs were identified in the peak regions 
using the homer motif set. After calculation of severity-specific differ-
entially accessible peak regions (FDR ≤ 0.01 and log2(fold change) ≥ 2) 
comparing chromatin profiles of monocytes from individuals with mild 
and severe COVID-19 to cells from control donors, motif enrichment 
analysis was performed using ArchR’s peakAnnoEnrichment function.

CyTOF data and analysis
For mass cytometry data from a publicly available publication21, please 
refer to the Methods part of the work for detailed descriptions of the 
cohort, data collection and analysis workflows. Here, CD8+ T cells were 
separately reanalyzed and pregated using OMIQ cloud-based cytom-
etry analysis software, also in relation to the presence of IFN-AAB22. In 
addition to the steps described21, we performed a PCA using R (4.0.2), 
where principal components were first calculated for all the events, 
and averages of principal component values per individual were used 
in plotting. Figures were rendered with the help of the R package ggfor-
tify and function autoplot, which allows plotting of eigenvectors of 
input variables when used on precalculated principal components. 

An ellipse was calculated with ggplot2 to visually estimate the locali-
zation of different groups. Marker intensity box plots show average 
z-score-normalized intensity signals for all the CD8+ T cells per indi-
vidual. Z-score normalization was performed beforehand over all the 
immune cells acquired in CyTOF.

Flow cytometry analysis of monocytes and DCs in individuals 
with COVID-19
Fixed whole-blood samples from individuals with COVID-19 were col-
lected, processed and stored, as previously described25. The samples 
were subsequently thawed to room temperature, and erythrocytes 
were lysed with Thaw-Lysis buffer (Smart Buffer). After 5 min of treat-
ment with 50 U ml–1 Pierce Universal Nuclease for Cell Lysis (Thermo 
Scientific) and 20 min of blocking with 1 mg ml–1 beriglobin (CSL 
Behring), the samples were stained for 30 min at 4 °C with antibod-
ies to CD45 (HI30), CD11c (Bu15), CD14 (MφP9), CD3 (UCHT1), CD19 
(SJ25C1), CD40 (5C3), CD83 (HB15e), CD86 (IT2.2), HLA-DR (G46-6), 
CD16 (3G8), CD141 (1A4) and CD163 (GHI/61). A BD LSRFortessa was 
used for the measurement of samples, and FlowJo software (TreeStar) 
was used for analysis. Expression of CD45, CD3, CD19 and HLA-DR 
was used for granulocyte, T cell, B cell and natural killer cell exclu-
sion, respectively. Monocytes were gated as CD14+CD11c+ and DCs as 
CD14−HLA-DR+ events.

In vitro generation of human CD34+ stem cell-derived cDC1s
Human umbilical cord blood was obtained with written informed 
consent from the Queensland Cord Blood Bank and approval from 
the Mater Human Research Ethics Committee (HREC13/MHS/86). 
cDC1s were differentiated in a 9- to 10-d culture of in vitro expanded 
cord blood CD34+ progenitors in 100 ng ml–1 FLT3L (Peprotech), 
100 ng ml–1 stem cell factor (Peprotech), 2.5 ng ml–1 IL-4 (Invitrogen) 
and 2.5 ng ml–1 granulocyte–macrophage colony-stimulating factor 
(Invitrogen), as previously described30, but with the addition of an 
irradiated OP9-DL1 stromal cell feeder layer to maximize cDC1 yields54. 
CD141+CADM1+CLEC9A+ cDC1s were enriched to >80% purity by labe-
ling with biotinylated antibodies to human CADM1 (CM004-6) or CD141 
(M80) and anti-biotin microbeads, followed by positive selection on an 
LS column according to manufacturer’s instructions (Miltenyi). Puri-
fied cDC1s were cultured at a density of 1 × 106 per ml in the presence of 
1,000 U ml–1 human IFNα2a (PBL), 5 µg ml–1 CD40 agonistic antibody11 
(34G12-h2, a gift from M. Cragg at University of Southhampton) or a 
combination. TNF-α was detected in the supernatant after 18 h using 
a LegendPlex kit (Biolegend) on a CytoFLEX-S (Beckman Coulter)  
flow cytometer.

Quantification and statistical analysis
Prism v8.4.3 (GraphPad Software) was used to assess statistical sig-
nificance of non-RNA-seq data; z score = (x – mean)/s.d. The sample 
size (n), statistical significance and statistical tests are indicated in the 
legends. Data distribution was assumed to be normal, but this was not 
formally tested. Data collection and analysis were not performed blind 
to the conditions of the experiments and no formal randomization was 
used. No data points were excluded.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The RNA-seq data set generated in this study can be accessed via the 
GEO accession number GSE171690.

Code availability
Code used for the analysis of scRNA-seq and scATAC-seq data is avail-
able at https://github.com/schultzelab/Gressier_2022. We also provide 
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the scRNA-seq data sets used in this study and the code to analyze the 
respective data sets via FASTGenomics (https://beta.fastgenomics.
org/p/gressier_2022).
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Extended Data Fig. 1 | CD40 synergizes with varying inflammatory stimuli 
BMDC1. a, ‘BMDC1-IFN-αA+CD40’ increase secretion of CCL4, TNF-α and 
CCL5 (from left to right) over time compared to ‘BMDC1-IFN-αA’, ‘BMDC1-
CD40’ and ‘BMDC1-unstimulated’. Data are presented as mean ± s.e.m pooled 
from 3 independent experiments. Adjusted p-value of statistically significant 
differences between conditions as assessed by one-way ANOVA indicated.  
b, Changes in Il15 and Cxcl16 expression in ‘BMDC1-IFN-αA+CD40’ and ‘BMDC1-
IFN-β+CD40’ compared to ‘BMDC1-IFN-αA’ or ‘BMDC1-IFN-β’ respectively and 
to ‘BMDC1-CD40’ and ‘BMDC1-unstimulated’. c. Tnf and Ccl4 in expression in 
BMDC1s stimulated with LPS, CpG or poly(I:C) for 6 h with or without CD40 
Ab for the last 30 min. b-c, Data are presented as mean ± s.e.m pooled from 

3 independent experiments. Adjusted p-value of statistically significant 
differences between conditions as assessed by one-way ANOVA indicated; 
ns = non-significant. d, Percent of MHC-IIhi CD8+ DCs from IFNαR-deficient 
(Ifnar2−/−) and WT mice naïve or 2 days after epicutaneous HSV-1 infection. Data 
are presented as mean ± s.e.m pooled from 7 independent experiments (n≥5 per 
experiment). Statistically significant differences between conditions as assessed 
by Mann-Whitney test; two-tailed p-value indicated; ns = non-significant. 
e. ‘BMDC1-IFN-αA’ and ‘BMDC1-unstimulated’ increase CD40 expression 
to comparable levels over time. Data are presented as mean ± s.e.m pooled 
from 3 independent experiments. Two-way ANOVA performed between the 
corresponding conditions ns = non-significant.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | CD40 stimulation induces successive waves of 
transcriptional regulation in IFN-αA-conditioned BMDC1. a, Genes included 
in modules 1, 2 and 3 from the co-expression analysis (Fig. 2e) displayed as 
heatmap. b, Top GO-terms associated with the genes included in modules  
1, 2 and 3 (Fig. 2e). c, Representative immunoblotting of IκBα degradation and 

P65 phosphorylation in 'BMDC1-IFNαA+CD40-15min', 'BMDC1-IFNαA-30min' 
and ‘BMDC1-IFN-αA+CD40-4h’ compared to ‘BMDC1-IFN-αA’, ‘BMDC1-CD40’ 
and ‘BMDC1-unstimulated’. Full gels of the two independent experiments are 
displayed below. Probing of β-actin and/or total P65 served as loading control.
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Extended Data Fig. 3 | Enrichment of APC with ‘help’-dependent 
transcriptional profiles in patients with moderate COVID-19. a, Differentially 
expressed genes in DCs comparing disease severity and disease stage that 
correspond to the ‘CD40 unresponsive’, ‘amplified’ and ‘combinatorial’. Data 
from published DC-enriched scRNAseq data26. b, Average gene expression in 
CD14+ monocytes per sample across selected key genes in a cohort of control 
(n=5), mild (n=5) and severe (n=5) COVID-19 patients and 7 samples derived 
from patients with IFN-AAB. c. Combined data set across 263 samples including 
controls (n=39), mild COVID-19 (WHO 1-3, n=79), moderate COVID-19 (WHO 

4-5, n=82), severe COVID-19 (WHO 6-8, n=52), severe COVID-19 with IFN-AAB 
(WHO 7-8, n=11). Samples are stratified by disease severity according to the WHO 
ordinal scale as indicated and segregated by time point of sample collection 
relative to the onset of symptoms where available. c, Single-sample GSVA of 
the ‘CD40 unresponsive’, ‘amplified’ and ‘combinatorial’ gene signatures in 
monocytes from COVID-19 and control samples of the combined data set in b. 
stratified by disease severity and plotted as box plots of the enrichment scores. 
Wilcoxon rank-sum test p-value is shown.
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Extended Data Fig. 4 | Enrichment of CD8+ T cells with ‘help’-dependent 
transcriptional profiles in patients with moderate COVID-19. a, Differential 
expression of selected key genes in CD8+ T cells derived from PBMCs scRNA-seq 
data of moderate and severe cases of COVID-19 and healthy HC originally as 
published36. b, AUCell enrichment of CD8+ T cells for ‘helped’ and ‘unhelped’  
T cell gene signatures derived from RNA-seq analysis of CD8+ T cells primed in 
the presence or absence of CD4+ T cell help. Data are stratified by disease severity 
and plotted as violin plots of the ‘Area Under the Curve’ (AUC) scores. c. AUCell 
enrichment of CD8+ T cells for ‘helped’ and ‘unhelped’ T cell gene signatures 

derived from RNA-seq analysis of CD8+ T cells primed in the presence or absence 
of CD4+ T cell help. Data are derived from scRNA-seq of nasopharyngeal and 
bronchial samples stratified by disease severity and plotted as violin plots of the 
‘Area Under the Curve’ (AUC) scores37. d, Heatmap showing z-scaled expression 
values of indicated proteins across the clusters identified in the CyTOF data 
of individuals with COVID-19 and HCs. e. Box plots showing relative cluster 
abundances of selected clusters across COVID-19 and control samples stratified 
according to disease severity and presence of IFN-AAB. Benjamini-Hochberg 
corrected pairwise Wilcoxon p-values are shown.
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PhosFlow cytometry: Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) antibody (197G2 - Cell Signaling Technology #13148) and 
Phospho-p38 MAPK (Thr180/Tyr182) antibody (4NIT4KK - ThermoFisher Scientific #46-9078-42). 
Flow Cytometry following HSV infection and restimulation:  CD16/CD32 (2.4G2, Fc block - BD Pharmigen #553142), CD8 (53-6.7 - 
eBioscience #17-0081-82), CD44 (IM7 - eBioscience #45-0441-82), CD45.2 (104- eBioscience #47-0454-82), CD3 (145-2C11 - BD 
Horizon #563565), IFN-g (XMG1.2 - BD Biosciences #557649) antibodies.

Validation The antibodies are all in common use and have been validated by the manufacturer and by citations. Validation materials are 
available on respective manufacturer home pages for each antibody. 
Isotype controls (for anti-CD40 monoclonal antibody, FGK45.5 from Miltenyi Biotec) and Fluorescence Minus One (FMO) for 
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) and Phospho-p38 MAPK (Thr180/Tyr182) were used to perform validation in these 
specific circumstances.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6, Cd40-/-, Irf1-/- and Cxcr6-/- mice used in this study were all female between 6 and 12 weeks of age.

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve samples collected in the field.

Ethics oversight All animal experiments were approved by The University of Melbourne Animal Ethics Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Population characteristics on the human research participants included in the respective cohorts of the PBMC single-cell RNA 
sequencing data sets included in this manuscript can be found in the original publications: Schulte-Schrepping et al., 2020 
Cell (doi: 10.1016/j.cell.2020.08.001), Arunachalam et al., 2020 Science (doi:10.1126/science.abc6261), Bernardes et al., 
2020 Immunity (doi:10.1016/j.immuni.2020.11.017) and Chua et al., 2020 Nat Biotechnol (doi:10.1038/s41587-020-0602-4).

Recruitment Details on the recruitment of the human research participants included in the respective cohorts of the PBMC single-cell RNA 
sequencing data sets included in this manuscript can be found in the original publications: Schulte-Schrepping et al., 2020 
Cell (doi: 10.1016/j.cell.2020.08.001), Arunachalam et al., 2020 Science (doi:10.1126/science.abc6261), Bernardes et al., 
2020 Immunity (doi:10.1016/j.immuni.2020.11.017) and Chua et al., 2020 Nat Biotechnol (doi:10.1038/s41587-020-0602-4).

Ethics oversight Details on the ethical oversight of the respective cohorts of the PBMC single-cell RNA sequencing data sets included in this 
manuscript can be found in the original publications: Schulte-Schrepping et al., 2020 Cell (doi: 10.1016/j.cell.2020.08.001), 
Arunachalam et al., 2020 Science (doi:10.1126/science.abc6261), Bernardes et al., 2020 Immunity (doi:10.1016/
j.immuni.2020.11.017) and Chua et al., 2020 Nat Biotechnol (doi:10.1038/s41587-020-0602-4).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.
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Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation BM-cDC1 sort: Single cell suspensions from murine bone marrow were cultured with FLT3L to generate bone-marrow-
derived DCs after red blood cells depletions. Following 8 days of culture at 37oC, cells were stained for 30 min on ice in order 
to sort BM-cDC1. 
BD Cytometric Bead Array measurement: performed on supernatant collected from stimulated BM-cDC1s 
PhosFlow: performed on stimulated BM-DCs subjected to 10min incubation at 37oC with warm PhosFlow Lyse/Fix Buffer, 
followed with resuspension in PhosFlow Perm Buffer III and incubation for 30min on ice. Samples washed twice and stained 
for an hour at room temperature. 
Intracellular staining: 10 days after infection, splenic HSV-1 gB498-505-specific CD8+ T cells were peptide restimulated for 5 h 
ex vivo. Single cell suspensions were stained with antibodies targeting surface markers and upon fixing and permeabilization 
with BD Cytofix/Cytoperm stained for 20 min at room temperature with intracellular IFNg-targeting antibody in BD Perm/
Wash buffer.

Instrument BM-cDC1 sort: FACS Aria III (BD Biosciences). 
BD Cytometric Bead Array and intracellular staining measurements: LSR Fortessa (BD Biosciences) 
PhosFlow: Cytek Aurora

Software FlowJo software (v10.7.1)

Cell population abundance BM-cDC1 sort: cDC1 represent 30 to 40% of living cells in FLT3L in vitro cultures. Purity check was systematically performed 
following each individual sort. 

Gating strategy BM-cDC1 sort: Cell population was first gated on FSC-A vs SSC-A and doublets were further excluded through FSC-H vs FSC-W 
followed by SSC-H vs SSC-W. Dead cells were excluded via propidium iodide (PI) staining. BM-cDC1 were identified by CD24 
high SIRPa low CD11b low and CD45R/B220-. 
Flow Cytometry following HSV infection and restimulation: Lymphocytes were first gated on FSC-A vs SSC-A and doublets 
were further excluded through FSC-H vs FSC-W followed by SSC-H vs SSC-W. Dead cells were excluded (near IR). Next, 
CXCR6-/- CD8+ T cells were gated on CD45.2+, CD8+, CD44+, while WT  CD8+ T cells were gated on CD45.1+CD45.2+ CD8+, 
CD44+ when respectively applicable.. The IFN-g+ cells were subjected to measurement. In the case of bone marrow chimera, 
CD45.1+ original recipient cells could be identified as CD45.1+ and these were mostly replaced by the donor bone marrow.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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