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Whileregulatory T (T,.,) cells are traditionally viewed as professional
suppressors of antigen presenting cells and effector T cellsin both
autoimmunity and cancer, recent findings of distinct T, cell functions in
tissue maintenance suggest that their regulatory purview extends to a wider
range of cells and is broader than previously assumed. To elucidate tumoral
T, cell ‘connectivity’ to diverse tumor-supporting accessory cell types, we
explored immediate early changes in their single-cell transcriptomes upon
punctual T, cell depletion in experimental lung cancer and injury-induced
inflammation. Before any notable T cell activation and inflammation,
fibroblasts, endothelial and myeloid cells exhibited pronounced changes
intheir gene expressioninboth cancer and injury settings. Factor analysis
revealed shared T, cell-dependent gene programs, foremost, prominent
upregulation of VEGF and CCR2 signaling-related genes upon T, cell
deprivationineither setting, aswell asin T, cell-poor versus T, cell-rich
humanlungadenocarcinomas. Accordingly, punctual T, cell depletion
combined with short-term VEGF blockade showed markedly improved
control of PD-1blockade-resistant lung adenocarcinoma progression

in mice compared to the corresponding monotherapies, highlighting a
promising factor-based querying approach to elucidating new rational
combination treatments of solid organ cancers.

Diverse stromal cell types found within the tumor microenvironment  mobilized by immunotherapeutic agents, have been implicated in
(TME) cansupport cancer initiation and progression by actingasacces-  limiting cancer progression, yet some of the very same cell types can
sory cells, yet their relationships and interdependenciesremainpoorly ~ support tumor growth either directly or indirectly by facilitating
understood. Cells of the innate and adaptive immune system, when  tumor-promoting functions of other accessory cell types. T, cells,
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Fig.1|Early transcriptional responses of principal accessory cell populations
inthelungadenocarcinoma TME to T, cell depletion. a, Schematic of the
experimental design. b,c, Quantification of T,., (CD4"Foxp3°) one-tailed unpaired
t-test P=12.87,d.f.=7***P<0.0001and Tcon (TCRB*CD4" and TCRB*CD8")

cell populations; left, one-tailed t-test P= 0.3799, d.f. = 7, not significant (NS)
P=0.3576; right, one-tailed t-test P= 0.1925, d.f. =7, NS P= 0.4264, in tumor-
bearing lungs 48 hafter diphtheria toxin (DT) or PBS (Ctrl) administration.

d, Quantification of lung weight in tumor-free and tumor-bearing mice 48 h after
DT-induced T, cell depletion. One-way analysis of variance (ANOVA) followed

by Sidak’s multiple-comparisons test. Tumor-free PBS versus tumor-free DT,
P=0.004037,d.f.=10 NS P> 0.9999; tumor PBS versus tumor DT, P= 0.7450,
d.f.=10,NS P=0.9787. e, Representative IF staining of Foxp3* cells in tumor-
bearing lungs of Ctrl and DT-treated mice. f, Numbers of upregulated (red)

or downregulated (blue) DEGs (P < 0.05) 48 h after DT or PBS administration
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identified by bulk RNA-seq analysis of the indicated cell subsets. Fib, fibroblasts;
Neu, neutrophils; Mac, macrophages; CD4 and CD8, effector CD4"and CD8"
Tcells. g, Representative IF staining of the indicated cell types. h, Quantification
of distances between T, cells and the indicated cell types. One-way ANOVA,
alpha=0.05, followed by Tukey’s multiple-comparison test T,.,-Fib tumor-free
zone versus tumor nodule, g =8.041, d.f. = 2544 ***P < 0.0001. T,.,-LEC tumor-
free zone versus tumor nodule ¢ =10.08, d.f. = 2544, ***P < 0.000L, T,.,-Mac
versus tumor-free zone versus tumor nodule ¢ =17.79, d.f. = 2544, ***P < 0.0001.
Atleast 200 cells were counted in each comparison. Three independent sections
per mouse were analyzed. Three and four mice were used in each group in two
independent experiments. Data are presented as the mean + s.e.m. (b-d)

(band c) N=Ctrl-5,DT-4, (d) N=3 tumor-free PBS, 3 tumor-free DT, 4 tumor PBS,
4 tumor DT. Data are presented as the mean + s.e.m.
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expressing the transcription factor Foxp3, are highly enriched in
humansolid organ cancers and their experimental animal models, and
atsites ofinflammation and injury, where they exert both their essen-
tialimmunosuppressive function and distinct tissue repair-promoting
modalities' . Depletion of T, cells results in restraint of tumor growth
in numerous experimental cancer models® . Nevertheless, some
tumors eventually progress after aninitial response to T, depletion’.
Thelatter canbe due to waning functionality of effector T cells due to
negative regulation by co-receptors, foremost PD-1, expected to occur
primarily in PD-1blockade-responsive tumors expressing PD-L1. An
alternative, yet not mutually exclusive, explanation, is that T, cell
depletion induces compensatory modulation of key accessory cell
typesinthe TME, which may affect predominantly PD-1nonresponsive
cancers. Thus, early changes in diverse cellular components of the
TME upon short-term T, cell depletion may directly and indirectly
impact its overall effect on tumor growth. Thus, we sought to eluci-
date the interplay between T, cells and other cellular components
of the TME by investigating early changes in their features upon T,
depletionin experimental cancer settings. Specifically, we wished to
use a genetically engineered mouse model that is characterized by
natural evolution of the TME, pronounced T, cell presence, resist-
ance to PD-1 blockade and close resemblance to human disease.
Therefore, we used Kras““ "I Trp53"" mice harboring a Foxp3°P™®
allele (KP-DTR), in whichintratrachealinfection with a Cre-expressing
replication-deficientadenovirusinduces lung adenocarcinoma (LuAd)
formation. These mice offer a well-established model of non-small cell
lung cancer (NSCLC) in humans, a disease where only some respond
to PD-1/PD-L1 blockade-based therapies™°'2. Our studies revealed
that T, cells profoundly affect the transcriptional programs of key
accessory cells including endothelial cells, fibroblasts, monocytes
and macrophagesinthe TME. Moreover, these T, cell dependencies
of the transcriptional states of accessory cells are largely conserved
in human lung cancer.

Results

Early responses of tumor microenvironment cellsto T, cell
depletion

To enable temporally controlled T, cell depletion in KP adenocarci-
nomas, we generated Kras™S- 2" Trp53V Foxp3°""P™ mice, inwhich
all T, cells express the diphtheria toxin receptor (DTR)". We reasoned
thatsince T, cells are typically found in the tumor margins, early com-
pensatory responses of key accessory cell types—tumor-associated
fibroblasts, vascular endothelial cells (VECs) and lymphatic endothe-
lial cells (LECs), and macrophages (Mac)—to T, cell depletion likely
precede effects on the tumor growth. Because the expansion of acti-
vated self-reactive T cells, observed 72-96 h after DT-mediated T,
cell depletion in Foxp3°"P™ mice, induces pronounced inflamma-
tory responses®, we sought to minimize these confounding factors
by analyzing early transcriptional responses of KP tumor cells, lung

epithelial cells (ECs), VECs, LECs, macrophages and T cells 48 h follow-
ing DT administration to tumor-bearing KP-DTR mice (Fig. 1a,b and
Extended DataFig.1a,e). As expected, pronounced local and systemic
T cell activation and inflammation, typically elicited by an extended
T, celldepletionregimen, were not observed (Fig. 1c and Supplemen-
tary Fig. 1c), and tumor volume was unaffected at this early time point
(Fig.1d) eventhoughneutrophils were moderately increased (Extended
Data Fig. 1c,k). Highly efficient tumoral T, cell depletion in situ was
confirmed by immunofluorescence (IF) microscopy of DT-treated as
compared to control (Ctrl) mice, inwhich T, cells were found mainly at
the boundaries of tumor foci (Fig. 1e). Bulk RNA-sequencing (RNA-seq)
analyses of cell subsets purified by fluorescence-activated cell sort-
ing (FACS) from the lungs of DT-treated KP adenocarcinoma-bearing
KP-DTR mice showed pronounced changesin gene expressionin LECs,
macrophages and fibroblasts, while T cells, which are considered the
main targets of T, cell suppression, changed the least (Fig. 1f and
Supplementary Table1). Among accessory cells, the most pronounced
transcriptional responses were observed in fibroblasts, endothelial
cells and CD11c” myeloid cells, highlighting T,., cell ‘connectivity’ to
these cell types in tumor-bearing lungs (Extended Data Fig. 1f-h and
Supplementary Table1). Importantly, DT-induced T, cell ablationin
tumor-free control KP-DTR mice resulted in minor, if any, changes in
gene expressionin all lung cell populations analyzed with the excep-
tion of VECs (Extended Data Fig. 1j,k). This was consistent with the
predominantly intravascular localization of T ., cells in the lung of
unchallenged micein contrast to their heavy presencein the cancerous
lung parenchyma (Extended Data Fig. 1f,g)"*. These results suggest that
the observed transcriptional changesinaccessory cellsin cancerous
lungsarenotduetoasystemicresponse to T, cell depletion. Next, we
investigated whether shared groups of genes underwent modulationin
different accessory celltypes and observed correlated gene expression
changesinendothelial cells and fibroblasts (Extended Data Fig. 1f, g).
These included programs related to endothelial-to-mesenchymal
transition (EndMT)-related genes (/d2, ltgav and Cxcl12), which were
previously shown to be modulated by T, cellsin the hair follicles®, and
inflammation-related genes (/l6, Ccl5, Acach, Ccl22, Argl and Tnfrsf18),
whose expression is affected by T, cells in adipose tissue in the con-
text of metabolicinflammation and muscle injury'®" (Extended Data
Fig. 1g). Cell-type-specific gene expression changes confirmed the
shared gene expression changes were not due to sample impurities
(Extended Data Fig.1h). Considering the early transcriptional response
of several TME cell types to T, depletion, we assessed whether T,
cells were found in the proximity of these ‘first responders’ using IF
analysis of tumor-bearing lungs. Indeed, GFP-DTR' T, cells were found
in markedly closer proximity to Lyve-1' LECs, GP38* fibroblasts and
F4/80" macrophages within and near tumor nodules than in areas
further away from tumor nodules in the same tumor-bearing lung
(Fig. 1g,h). Collectively, we have shown that T, cells are highly con-
nected in the KP TME.

Fig.2|Single-cell transcriptomic analysis of ‘T, cell dependencies’

of accessory cell states in mouse lung adenocarcinoma tumor
microenvironment. a,b, t-distributed stochastic neighbor embedding (¢-SNE)
plots (27,000 cells) representing cell populations from major cell lineages
isolated from 48 h DT-treated or PBS-treated (Ctrl) tumor-bearing lungs

(three mice per group) colored by cell type (a) and condition (b). ¢, A density

plot showing the distribution of cells between experimental conditions.

d,e, t-SNE plots (2,815 cells) representing distribution of the VEC populations
colored by subtype (d) and condition (e). f, A density plot of endothelial cells
showing the distribution of cells between experimental conditions. g, Graph of
neighborhoods of endothelial cells computed using MiloR and ¢-SNE embedding.
Each dotrepresents aneighborhood and is color coded by the false discovery rate
(FDR)-corrected Pvalue (alpha = 1) quantifying the significance of enrichment

of DT cells compared to control in each neighborhood. The size of the dot
represents the number of cellsin the neighborhood. h, Swarm plot depicting the

log fold change of differential cell-type abundance in DT-treated versus

control samplesin each neighborhood across different endothelial cell types.
Each dotrepresents aneighborhood and is color coded by the FDR-corrected
Pvalue (alpha = 1) quantifying the significance of enrichment of DT cells
compared to control in each neighborhood. A neighborhood is classified as a cell
typeifit comprises at least 80% of cells in the neighborhood, otherwise it is called
‘mixed’.i, Heat map showing average factor cell score in each cluster for each
experimental conditionin the VEC population. The scores were row normalized
between 0 and 1. Each row represents a factor, and each column represents a
cluster in a specific experimental condition. The clusters are grouped based on
their phenotype.j, Gene expression heat maps showing the top 200 genes that
correlated the most with the imputed activated VEC factor indicated (Methods).
Each columnrepresents a cell; cells are ordered based on their factor score (in
ascending order from left to right) indicated by the green bar. Select genes of
interest are noted on theright.b, e, handi; Ctrl, PBS, gray; DT, red.
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Single-cell analysis of tumoral T, cell ‘connectivity’

Toexplore theimpact of T, cells on the diverse cell statesin the TME,
we performed single-cell RNA sequencing (scRNA-seq) of sorted CD45"
and CD45" cell populations using the 10X platform (Extended Data
Fig.2a). These populations were isolated from tumor-bearing lungs of
KP-DTR mice treated for 48 hwith DT or vehicle control 3 months after
adenoviral Cre-driven tumor initiation (Fig. 1a). After pre-processing,
we clustered cells using PhenoGraph'® and annotated clusters using
expression of known markers into major cell types (Extended Data
Fig. 2b-d). To ensure our inferences were robust, we focused on the
major hematopoietic and non-hematopoietic cell types in the TME
that had substantial numbers of cells. The final processed datasets
included LECs, VECs, LECs, fibroblasts, lymphoid cells and myeloid
cells (macrophages, monocytes, dendritic cells (DCs) and neutrophils;
Fig.2a). Similarly to population-level assessments, sScRNA-seq showed
that short-term T, cell depletion had profound effects on transcrip-
tional features of fibroblasts, myeloid and endothelial cells compared
to lymphocytes (Extended Data Fig. 2e and Fig. 2a-c). To gain deeper
insightinto the phenotypic response of accessory cells whose transcrip-
tomes were most affected by T, removal—endothelial cells, fibroblasts
and myeloid cells, we separately clustered and embedded each subtype
to ascribe finer-grain identities (Fig. 2d and Extended Data Fig. 3; for
annotation strategy see Methods). Furthermore, we used Milo™ to
quantify changesin abundance of subpopulations and cell states after
T, cell depletion (Methods). We found several cell states affected by
T, cell depletion, with the most pronounced phenotypic shifts in capil-
lary VECs, mesenchymal stem cells (MSCs), ColI4al matrix fibroblasts,
monocytes and macrophages (Fig. 2d-hand Extended Data Fig. 4a-d).
Therefore, T, cell depletion markedly affected the distribution and
abundancies of several cell states and subsets in the TME.

Shared and distinct T,., cell-dependent gene programs

Wethensoughtto characterize genes thatrespond to T, cell depletion
in these key accessory cell subsets. We used factor analysis to char-
acterize gene expression programs—sets of genes whose expression
changes in a coordinated way in a specific set of cells and assessed
their differential usage in cell populations from control or DT mice to
elucidatetheresponseto T, cell depletion. Specifically, factor analysis
methods are well suited to decompose data into factors, which rep-
resent coordinated expression programs across cells and reduce the
impact of noise on analysis, which can be dominant at an individual
gene level®’. We used single-cell hierarchical Poisson factorization
(scHPF), designed specifically for scRNA-seq*** and applied it to each
celllineage separately to dissect the observed gene expression changes.
Each cell and gene present in the expression matrix was assigned a
score for each factor, enabling biological interpretation of that factor
(seeSupplementary Table 2 for factor gene and cell matrices). Factors
were robust torandomi initializations of the model and robust to slight
changes in parameters (Methods and Supplementary Fig.1).

We reasoned that gene programs most affected by T, cell pres-
ence would have differential factor cell scores between the control
and DT conditions. To evaluate this systematically, we computed the
average cell score of every factor in each cluster for each condition
(Fig.2i) andidentified those that have higher averagesin DT compared
to control. In the endothelial lineage, we identified four major gene
programs that were robust to randomiinitializations (Supplementary
Fig.1), were biologically relevant and had significantly differential cell
scores (Mann-Whitney test; Methods) following T, cell depletion
compared to control in at least one of the endothelial cell subtypes
(Fig. 2i). We then visualized expression of the genes with the highest
factorloadingsintherelevant cell subtype (Fig.2j). We observed several
notable patterns, including the inflammatory or activated capillary
VEC factor (factor 3), a highly T,, cell-dependent factor character-
ized by cytokine/chemokine-, Notch and nuclear factor-kB (NF-kB)
signaling-, and co-stimulation pathway-related gene expression
(Fig. 2j; see Supplementary Table 3 for endothelial factors of inter-
est). Other highlighted factors enriched following T, cell depletion
inthe endothelial cell populationincluded genes related to the NF-kB
signaling pathway (Nfkbia, Rel, Hbegf), inflammation/hypoxia (KIf6,
Serpinel, Plaur; factor15) and vascularization (Vegfa, Thbd and Slco2al;
factor 8), and geneslinked to transforming growth factor-beta-induced
EndMT (Emp3, Timpl and Tgm2; factor 17). Besides cancer, the latter
processisinduced inaberrant tissue remodeling and fibrosis*>**. These
observationsindicate that T, cellsimpact specific features of certain
endothelial cell subsets in the TME.

Notably, the observed transcriptomic perturbations were not
unique to endothelial cells. The T, cell depletion-induced gene pro-
grams related to interferon (IFN) response, inflammatory cytokines
(ICs) and chemokines, STAT3 and interleukin (IL)-6 signaling appeared
tobesharedacross accessory cell populations. The three most differen-
tially expressed gene (DEG) programs observed in fibroblasts following
T, celldepletionincluded aninflammatory secretory phenotype (Ccl2,
Hifla, Rel, Cxcl1;factor 22), IFN response (Irf7, Ifit3, Isg15; factor 9) and
ECM-related genes (Fbnl, Fnl,Lamc2, Notch2; factor 14; Extended Data
Fig.5a,b and Supplementary Table 4). On the other hand, several fac-
tors in monocytes (factors 2, 5, 7,13, 17, 21 and 22) and macrophages
(factors15,17 and 23) including IFN and hypoxia response emerged as
differentially abundant (Extended Data Fig. 5¢,d and Supplementary
Table 5; for allsignificant factors across cell subsets, see Supplementary
Table 6). Theseresults suggested that T, cell communication with vari-
ouscellsinthe TMEimparted bothshared and distinct transcriptional
features across and within specific cell populations in either a direct
orindirect manner.

T...celldependency of accessory cell states in lung injury

To test whether the T, cell ‘connectivity’ to key accessory cell types
observedinlungcancerrepresentsageneralizable facet of tissue organ-
ization, we examined perturbations of their transcriptional states upon

Fig.3|Shared early transcriptional responsesinduced upon T, cell
depletion in mouse lung adenocarcinoma TME and bleomycin-induced
lung inflammation. a, t-SNE plots (24,592 cells) representing cell populations
isolated from the lungs of mice administered with diphtheria toxin (DT) or PBS
(Ctrl) for 48 h. Lung injury-induced inflammation was induced in both groups
of mice upon bleomycin treatment 21 d before DT/PBS administration. The
datarepresent analysis of three mice per group colored by cell type (left) and
condition (middle), and a density of the distribution of cells between conditions
(right). b, t-SNE embedding of endothelial cells isolated from Ctrland DT

after bleomycin administration color coded by cell type (left) or experimental
condition (middle), and density plots of the distribution of endothelial cells
between conditions (right). ¢, Heat map showing average factor cell score in
each cell type for each experimental condition for endothelial cell subsets. The
scores were row normalized between O and 1. Each row represents a factor, and
each columnrepresents an endothelial cell subset in a specific experimental
condition. Factors of interest are highlighted by a red box. d, Heat map showing

the 72 shared genes specific to activated VEC factor in both lung challenge
models (Methods and Supplementary Table 9). Each column represents a

cell; cells are ordered based on their factor score (in ascending order from

left to right), indicated by the green bar. e, Heat map showing factor cell score
across experimental conditions averaged over each myeloid clusterin each
experimental condition for bleomycin-administered cells. The rows are factors
and columns are clusters for each experimental condition. The clusters are
grouped based on the cell type they are associated with. The heat map shows
row-normalized scores from O to 1. The left color bar shows the average factor
cellscore. f, Heat maps showing the 54 shared genes between mouse lung tumor
and injury-induced inflammation in the ArgI* macrophage factor (tumor factor
23 corresponding to injury-induced inflammation factor O; Supplementary
Table10). Each columnisa cell; cells are ordered based on their factor score

(in ascending order from left to right) indicated by the green bar. The treatment
condition for each cellisindicated by gray for PBS and red for DT bars. Select
genes of interest are shown.
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Fig. 4 | Spatial transcriptomics identifies distinct inflammatory cytokine and
IFN signaling niches in lung adenocarcinoma following T, cell depletion.

a, Tumor region identification in KP LuAd sections using Visium ST. The

fraction of tumor cell RNA in each Visium spot (top right) was determined by
BayesPrism deconvolution, binarized (bottom right; Methods), and compared
to histological H&E images (left). b, Factor scores and Bonferroni-adjusted
two-sided t-test Pvalues differentially expressed factors between controland T,
cell-depleted conditions in ST. ¢,d, Representative tissue sections from control
(left) or T, cell-depleted (right) conditions. Tumor regions are outlined, and
spots are colored by factor score. Scores represent IC (c; 18 genes) or IFN (d;

103 genes) gene programs shared across all lineages (Br, bronchi; A/V, artery/
vein; LV, lymphatic vessel; IAs, immune cell aggregates). e, ST analysis revealed
distinct signaling niches. Spots were assigned to niches based on thresholding
agamma distribution fitted to IC or IFN signaling module scores across all spots
(Methods). f, Enrichment of cell-type RNA fractions in signaling niches. Adjusted
empirical Pvalue corresponds to the probability of obtaining the mean observed
RNA fraction for that cell type (Methods). Fractions with adjusted P> 0.01are
notshown. Inaand c-e,images are representative of, and analysis performed

on (bandf), one of two serial sections for each of four samples (DT and Ctrl, two
biological replicates each).
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Fig. 5| High-plasticity state and heterogeneity revealed by lung
adenocarcinomaresponses to T, cell depletion. a, ST analysis of tumor states.
BayesPrism deconvolution using additional labeled tumor cells from Yang et al.®
was performed to assign tumor-state-specific RNA fractions. Correspondence

of regions with highlighted differential tumor states (middle) to H&E section
isshown (right). Dashed lines denote regions with the indicated dominant

tumor states (red, high plasticity; yellow, EMT; black, lung progenitor-like).

b, Spots labeled by tumor-state cluster. Inaand b, images are representative

of, and analysis performed on (c and d), one of two serial sections for each of

four samples (DT and Ctrl, two biological replicates each). ¢, Quantification of
tumor lesion area types across T, cell depletion and control conditions (left)

or between tumors with or without detectableimmune responsein T, cell-
depleted condition (right; N = 85lesion areas). d, Differential gene expression
(two-sided Wilcoxon test Benjamini-Hochberg adjusted) of tumor spots
inlesions with and withoutimmune response to T, cell depletion. e, Log-
normalized expression of Sox9 and Pf4 (Cxcl4) in arepresentative tumor-bearing
lung section after T,., cell depletion. Inset at top left indicatesimmune response
status of tumor lesion areas.

identical short-term T, cell depletioninasetting of bleomycin-induced
fibrotic lung inflammation using scRNA-seq analysis (Fig. 3a,b and
Extended Data Fig. 6a-d). Not only were all cell populations detected
in tumor-bearing lungs also present in inflamed lungs, T,., deple-
tion in this setting also generated similar transcriptional responses
(Fig. 3a,b and Extended Data Fig. 6¢,d). Independent analysis of the
gene programs in the inflamed lung using scHPF (see Supplementary
Table 7 for factor matrices) identified T, cell depletion-associated
endothelial factors (Fig. 3c and Supplementary Table 8). We correlated
genescores associated with each factor from lung tumors tolunginjury
to identify similarities. We found that the activated VEC factor in the
lunginjury (factor 15) correlated strongly (Pearson correlation > 0.70)

with its counterpart in the tumor setting (factor 3), indicating that
the same set of genes responded to the loss of T, cells in both chal-
lenges. In fact, 72 of the top 200 genes associated with factor 3 spe-
cifictothe tumor endothelial cellinflammatory capillary subset were
shared with the top 200 genes associated with factor 15 specific to the
same subset of cells in the injury model (Fig. 3d and Supplementary
Table 9). Other endothelial cell factors, namely inflammation/hypoxia
(factor13), NF-kB signaling and EndMT (factor12), that were observed
intheinflamedlunguponshort-term T, cell depletionalso correlated
positively, even if weakly, with related tumor factors 15 and 8, respec-
tively (Extended Data Fig. 6e). Consistently, factor analyses of other
lineages revealed overlapping differential gene programs between
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Fig. 6| Local histological and immune response heterogeneity following T,,
cell depletion. a, H&E staining of representative tumor section characterized by
histological and immune response state heterogeneity after T, cell depletion.
Insets at bottom represent azoomed-in view of gastric (left) and high-plasticity
(right) areas. Black arrows highlight neutrophil infiltration in a high-plasticity
area. b, Tumor RNA fraction within highlighted high-plasticity and gastric
epithelial states (left) and gene expression modules (right) of tumor lesion
shownina.Images are representative of one of two serial sections for each of four
samples (DT and Ctrl, two biological replicates each).

tumor and injury models, including T, cell depletion-induced gene
programsin Argl* macrophages (Fig. 3e,fand Supplementary Table 10)
and IC signatures in Col14al matrix fibroblasts. These findings sug-
gested that T, cell-dependent transcriptional programs are not limited
to the TME and can be shared across pathological conditions.

Spatial distribution of T, cell-dependent tumor
microenvironment gene programs

Togaininsightsinto the spatial organization of the identified accessory
cell populations, gene programs and their relationship to transcrip-
tional states of tumor cells, we profiled four tissue sections (two control,
two T, cell depleted) using the 10X Visium platform. We used Bayes-
Prism*%, a Bayesian framework that jointly estimates cell-type frac-
tions and cell-type-specific gene expression using alabeled scRNA-seq
reference, to deconvolve each spatial transcriptomics (ST) spot into
constituent cell populations. Deconvolution was performed using our
scRNA-seq datasets labeled with 26 distinct cell populations selected

to optimize granularity, robustness and concordance with underly-
ing histological features in paired H&E-stained sections (Methods,
Fig.4a, Extended DataFig. 7a-e and Supplementary Table 11). Next, we
assessed whether the gene factors that changed upon T, cell deple-
tion in scRNA-seq were also identified by ST analysis. Consistently,
we observed upregulation of endothelial and fibroblast IC and IFN
signaling-related gene signatures after T, cell depletion within spots
assigned to the corresponding cell type (Fig. 4b). We also observed
increased use of genes associated with the activated VEC factor in capil-
lary aerocyte (aCap) endothelium assigned spots, as well asincreased
IFN and proliferation related gene signatures in myeloid spots. IC and
IFN factors shared many genes across all three analyzed accessory
lineages (18 forIC,103 for IFN), which suggested that similar gene pro-
grams were induced across colocalized cell types by common stimuli,
indicative of a signaling niche. The spatial behavior of shared genes
in these two programs showed localization to two distinct signaling
niches in the tissue, with the IC gene program (Cxcl2, ler3, Fosl1, I16)
localized to the tumor core and the IFN response gene program (/fitl,
Statl, Isgls5, Irf7) localized to the periphery of, or distal to tumor lesions.
Inspection of the same H&E-stained sections confirmed dense tumor
cell presence with potential hypoxia and neutrophil infiltration at IC
foci, and immune cell aggregates at sites with strong IFN response
signal (Fig. 4c—e and Supplementary Table 12). Further, ST analysis
revealed concordant differential distribution of tumor cells and acces-
sory cell types within these territories with higher frequency of tumor
cells, basophils/mast cells, neutrophils and MSCs in IC territories and
ahigh frequency of T cells/type 2 innate lymphoid cells (ILC2s), natu-
ral killer (NK) cells, conventional dendritic cells (cDCs), monocytes
and alveolar macrophages in IFN territories (Fig. 4f). Taken together,
these results point to two primary inflammatory and spatially distinct
modes of lung TME response to T, cell depletion within tumor mass
and tumor margin.

Tumor states associated with response to T, cell depletion
KPLuAds adoptarange of recurrent transcriptional states with features
of differentiated lung ECs, their progenitors or epithelial progenitors
from other tissues including the gastrointestinal tract and liver and
EMT (epithelial to mesenchymal transition)-associated ones” *°. We
next sought to identify potential associations between tumor states
andtheidentified TME niches, thatis, IC-positive, IFN-positive and cold
(negative) ones. We first identified tumor cells within our ECs by call-
ing KRAS p.Gly12Asp mutations. Because optimized dissociative TME
single-cell analysis protocols are suboptimal for capturing tumor cells,
weidentified only 239 tumor cells within our mouse scRNA-seq dataset.
To enable robust deconvolution of tumor cell states, we substituted
tumor cells from our scRNA-seq dataset with those from a published
dataset that had better capture of KP LuAd cells (KP-tracer dataset;
N=18,083)*, With this updated reference, we performed an additional
spot deconvolution to more accurately capture tumor states in the tis-
sue. TME fractions for other cell types remained relatively unchanged
between deconvolutions (Extended Data Fig. 7c).

Inspots with tumors, the tumor-state fractions exhibited regional
variation in gene expression programs, sometimes within seemingly
the same tumor nodule (Fig. 5a). Tumor spots were clustered by their
tumor-state fractions and typically showed a dominant tumor state
in each spot (Extended Data Fig. 8a) manifested in the expression of
corresponding marker genes (Extended Data Fig. 8b), forming continu-
ous spatial patches of similar phenotypes (Fig. 5b and Extended Data
Fig. 8c). Spots were grouped into tumor lesion areas, or contiguous
patches of tumor cells belonging to the same cluster and quanti-
fied across control and T, cell-depleted conditions. Tumor states
were also compared across tumors that had a detectable immune
response (>10% of spots in IC or IFN signaling niches) or notin T,
cell-depleted sections. T, cell depletion resulted in a pronounced
increase in tumor lesion areas that corresponded to a high-plasticity
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cellstate, specificallyamong tumor nodules associated withanimmune
response (Fig. 5c and Extended Data Fig. 8d,e)*’. This was consistent
withasignificantenrichment of high-plasticity cell-state genes upregu-
lated by tumor cells after T, cell depletion in scRNA-seq (Extended
Data Fig. 8f,g and Supplementary Tables 13 and 14). Therefore, TME
response to the removal of T, cells may elicit a gene program in
LuAds that represents an unstable transitional state, which can give
rise to other tumor states®”. While IC and IFN niches were observed
in the majority of tumor nodules after T, cell depletion, there were
some nodules, and even areas within individual nodules, that did not
(Fig. 4c). In particular, those with a gastric epithelial lineage gene
expression program were selectively devoid of IC or IFN responses
(Fig. 5c and Extended Data Fig. 8e). We assessed differential gene
expression between immune response ‘rich’ and ‘poor’ lesion areas
and foundincreased expression of Gkn2 (gastrokine), Pf4 (platelet fac-
tor 4/Cxcl4) and Sox9 among other genes (Fig. 5d,e and Supplementary
Table15). Interestingly, Sox9 expression in lung tumor cells was shown
toenable their escape from NK cell-mediated killing in certain cases”,
suggesting one potential mechanism ofimmune evasion. Similarly to
arecent analysis of CRISPR-edited tumors®, the observed response
to T, cell depletion was spatially restricted, as even ‘nonresponsive’
areas that were directly adjacent to responsive ones were deprived of
immune cell or IC signals (Fig.6a,b). Therefore, regional variation in
tumor state appears to define the TME response to T, cell depletion.

Conserved T, cell-dependent features of human and mouse
tumor microenvironment

Next, we sought to test whether T, cell-dependent TME features
observedinmice are conserved inhuman cancer (Fig. 7a) by leveraging
variationin T, cellabundancein 25 primary or local metastatic LuAd
samples from 23 individuals, analyzed using scRNA-seq (Supplemen-
tary Tables 16 and 17). Despite differences in composition and propor-
tionofaccessory celltypesinthese datasets, we were ableto detect all
cell populations corresponding to those observed in mice (Fig. 7b and
Extended Data Fig. 9a,b). To determine whether the factors induced
after T, cell depletion in mice are present in human LuAd samples
with alow abundance of T, cells, we first determined the frequency
of T, cells among all hematopoietic cells in each sample (Fig. 7c and
Extended Data Figs. 9c and 10a,b). Next, we performed scHPF analy-
sis for each of the cell lineages under investigation (Supplementary
Table 18) and looked for orthologous genes shared between human
and mouse factors to align gene programs between species (Fig. 7d).
Then, we assessed the correlation of mean factor usagein single cells to
T, cellfrequency across humansamples. This identified three factors
negatively correlated with T, cell proportion that corresponded to
aspects of the compensatory endothelial response to T, cell depletion
in the KP mouse model (Extended Data Fig. 10c). The latter included
factors whose most associated genes were related to activated aCap
(CAR4,CD36, IFNGR1, FAS, CX3CL1, TNFRSFI11b, EDNI; factors 3 and
5; Fig. 7e), inflammation and hypoxia (VEGFB, PLAUR, SERPINEI, IL6,
CXCL1,BCL3,PVR,IRF4,BATF3, TFP12;factors 4 and 5) and angiogenesis

factors (factor 3). We used the sum of these three factors as a general
T cell-responsive endothelial gene program to account for potential
sample-specific, cell-type-specific or condition-specific effects that
would separate ashared underlying biological programinto separate
factors during factorization (Extended Data Fig.10d). Comparing this
scoreto T, cell proportion, we observed a clear negative correlation—
stronger than any factor individually—across tumor samples (Fig. 7f),
which suggested conserved T, cellinfluence on this gene expression
program. To further identify specific components of this shared T,
cell-responsive endothelial gene expression program, we compared the
loadings of genes in the factors related to inflammation and hypoxia
across species (factors 4 + 5 in human LuAd, factor 15 in KP mouse;
Fig. 7g). This identified genes encoding key inflammatory mediators
(IL6, CSF3, VCAM1, SELE, PTGS2) and a host of VEGF-induced genes in
endothelial cells (RND1, ADAMTS1, ADAMTS4, ADAMTS9, AKAPI2) as
conserved members of expression programs induced in endothelial
cellsin T, cell-poor TMEs across species.

Similar analyses of fibroblasts and myeloid cells also revealed
corresponding T, cell-dependent mouse and human factors. For
example, human fibroblast factors 3, 5 and 22 corresponded to IC
mouse fibroblast factors 21 and 22, with overlapping genes including
IL6,IL1IRL1I,NFKBI1,CCL2and LIF (Extended DataFig.10e,f), while factor
9 (AP1 TF family members, KLF2/4, SOX9, HES1, IRFI) was negatively
associated with T, cell proportion. Additionally, high usage of con-
served CSF3Rmonocyte factor 16 (CSF3R, PROK2, VCAN) inhuman ‘T,
cell-poor’ LuAd samples was consistent with the hypoxia, angiogenesis
and NF-kB signaling related features (VEGFA, HIFIA, CEACAMI,NOTCHI,
BCL3, BCL6) of this population in T, cell-depleted mice (Extended
Data Fig. 10g,h and Extended Data Fig. 5d). Notably, several human
myeloid factors and corresponding mouse factors showed positive
correlationwith T, cell presence, such asan SPP1/FOLR2 macrophage
factor, acell cycle factor and a C1Q" macrophage factor (C1Q, antigen
presentation-related genes), which included genes encoding known
negative regulators of innate and adaptive immunity (CFH, CRIL,LAG3,
PDCDILG2, LILRB4, IL18BP; Extended Data Fig. 10i). Interestingly, we
observed similarly pronounced downregulation of this gene program
upon T, cell depletion in both lung tumors and bleomycin-induced
injury, suggesting that T, cells within both niches sustain certain
immunomodulatory myeloid cell states. Further analysis of correla-
tionbetween conserved T, cell-dependent human and mouse factors
revealed aset of opposing TME programs (Extended DataFig.10j). One
factorgroupinT,,cell-poor or T, cell-deprived tumorsincluded IL-1B/
IL-18 signaling-related genes (ILISRAP, ILIRAP) expressed in angiogenic
monocytes and tumor necrosis factor (TNF)/IL-1B3-induced genes in
fibroblast and endothelial cells involved in monocyte and neutrophil
recruitment (CSF3, CXCL1, CXCL2, CXCL8, CCL2). The other, positively
associated with T, cell presence, featuredimmunomodulatory genes
that inhibit IL-13/IL-18 signaling (TMEM1768B, ILI8BP; see Supplemen-
tary Table 19 for KP/injury/LuAd factors). These findings suggest a
conservedrole of T, cellsin tuning transcriptional states of principal
accessory cell typesinthe TME.

Fig. 7| Factor analysis of T,, cell ‘dependencies’ of accessory cell
transcriptional states in human and mouse lung adenocarcinomas.

a, Schematic of the experimental design. b, t-SNE plot of all cells (82,991 total
cells) from 25 primary human LuAd or local metastases labeled by lineage.

¢, t-SNE of T/NK cell lineage colored by unique molecular identifier (UMI) counts
of T, cellmarker genes (maximum of two). d, Jaccard similarity between genes
associated with mouse and human factors in tumor endothelial cells. Factors of
interest with high correlation are highlighted by agreen box. e, Conservation

of activated VEC signature genes. Normalized gene loading (fraction of gene
score across all factors) of genes within the mouse activated VEC signature
across allhuman endothelial factors. Upper and lower notches of the box plot
correspond to the 75th and 25th quartiles, respectively, and the middle notch
corresponds to the median. Whiskers extend to the farthest data point no more

than 1.5 times the interquartile range from the hinge, with outliers beyond that
displayed as individual points. Select genes with high loadings of factors 3and 5
are highlighted (N =45 genes). f, Mean log, sum of inflammation/angiogenesis
associated human endothelial factor (3, 4 and 5) cell loadings plotted against
log, T, cell proportionin each human sample. Spearman correlation estimate
(R) and Pvalue arelisted. Trend line represents a linear model fit between

the two and shading indicating the 95% confidence interval (N =19 human
samples). g, Normalized gene scores (fraction of gene scores across all factors)
in orthologous genes between mouse and human inflammation/hypoxia factors.
Genes significantly attributed to both human factors and mouse factors are
highlighted as conserved. VEGF-induced genes in endothelial cells were derived
from the CytoSig database.
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Combinatorial T, cell depletion therapy

These results highlighted candidate compensatory pathways, whose
targeting in combination with current clinical-stage intratumoral T,.,
celldepletion strategies®>* could improve therapeutic efficacy. In this
regard, theincreased expression of VEGF pathway-related genes upon
T, cell deprivation was of particular interest suggesting that height-
ened VEGF signaling may ‘buffer’ the negativeimpact of T, cell deple-
tiononthe tumor-supporting TME function and facilitate areboundin
the tumor progression. We tested the above possibility by investigating
whether combining short-term T, cell depletion with VEGF blockade
canlead to an improved control of KP tumor progression. We trans-
planted KP adenocarcinomasinto Foxp3°"P™® mice and administered
them with DT and mouse VEGF-A neutralizing antibody (aVEGF) after
tumors became macroscopically detectable (Fig. 8a). While T, cell
depletion and VEGF blockade alone could slow tumor progression,
their combination had a markedly more pronounced therapeutic
effect (Fig. 8b). Assessment of the overall survival rate, when mice
were left untreated after the initial response and killed after rebound
(tumor volume reached 1 cm?, maximum allowed by the institutional
guidelines) showed that combination therapy improved survival in
comparisonto either monotherapy or untreated groups (Fig. 8b). While
similarly increased numbers and activation level of tumoral T cells were
observedin ‘DT + aVEGF’ and ‘DT-only’ in comparison to ‘aVEGF-only’
tumor samples onday 20 of transplantation (Fig. 8c), IFN-y-producing
CD4" T cells and IFN-y-producing and TNFa-producing CD8" T cells
were markedly increased in the combination treatment group as were
monocyte numbers (Fig. 8d). Moreover, we observed furtherincreases
intumor hypoxiaand apoptosis upon combined T, cell depletion and
VEGF blockade in comparison to both monotherapeutic modalities
and untreated control groups (Fig. 8e,f). Notably, KP tumors failed to
respond to PD-1blockade, which did not offer additional therapeutic

benefits when combined with VEGF blockade in full agreement with a
recent study of antiangiogenic, anti-PD-1and chemotherapyinaKP lung
cancer model**. Recent studies revealed high amounts of chemokine
receptor CCR8 displayed by T,, cellsinhuman cancers*** highlighting
their depletion as a therapeutic strategy®*"*®, Thus, we examined the
therapeutic potential of short-term VEGF blockade combined with
antibody-mediated depletion of CCR8-expressing T, cells, which
represented only a fraction of intratumoral T, cells in KP tumors
(Fig. 8g). While CCR8 antibody treatment alone diminished tumor
growth, a markedly more pronounced effect was observed when it
was combined with VEGF blockade (Fig. 8h). Notably, this regimen
was associated with a mere 15% decrease in overall population of
tumor-associated T, cells in the absence of their noticeable changes
in the secondary lymphoid organs (Fig. 8i). Besides VEGF-A, whose
neutralization was conducted as a proof-of-concept approach for the
discovery of orthogonal combination therapy, we noted additional
candidate compensatory pathways enriched in the T, cell-poor or
cell-depleted TME including the CCR2-CCL2 axis, inhibitors of which
are currently tested as monotherapies or combination therapies of
human cancers. To further test the utility of assessment of early TME
responsesto T, cell depletion foridentifying combinatory therapeu-
tic modalities, we subjected KP tumor transplanted mice to a similar
short-termtreatment with CCR8 antibody and a selective CCR2 antago-
nist RS-504393 (CCR2i). The latter combination provided minimal
additional therapeutic benefitin comparison to anti-CCR8 and CCR2i
monotherapies contrary to aVEGF/CCR8 combination (Fig. 8j k). These
results suggest that CCR2 blockade and T, cell depletion may converge
onshared or partially overlapping TME states, whereas VEGF blockade
offersanorthogonalintervention and highlights potential for discovery
of orthogonal cancer therapies through single-cell and spatial analyses
of early TME responses to acute perturbation.

Fig. 8|Systemic or intratumoral CCR8" T,, cell depletion combined with
VEGF blockade restrains KP adenocarcinoma progression. a, Schematic of
the experimental design; s.c., subcutaneous. b, Tumor growth dynamics upon
theindicated therapeutic interventions. The data represent mean values of
tumor volume measurements (left). Adjusted Pvalues for day 20 measurements:
PBS-IgG versus DT-IgG P < 0.0001; PBS-1gG versus PBS-aVEGF P=0.0004;
PBS-IgG versus DT-aVEGF P < 0.0001; DT-IgG versus PBS-aVEGF P = 0.0328;
DT-IgG versus DT-aVEGF P=0.0109; PBS-aVEGF versus DT-aVEGF; P= 0.0005.
Representative image of tumor volumes at day 20 (center). Kaplan-Meyer
survival curves followed by log rank (Mantel-Cox) of KP tumor-bearing mice
(right). The ‘survival’ time reflects the end point of the experiment when tumor
volumeinindividual mice reached 1 cm?; adjusted P values: PBS-IgG versus
DT-IgG P=0.0012; PBS-IgG versus PBS-aVEGF P> 0.05 (NS), PBS-IgG versus
DT-aVEGF P=0.0078; DT-IgG versus PBS-aVEGF P> 0.05 (NS); DT-IgG versus
DT-aVEGF P= 0.05; PBS-aVEGF versus DT-aVEGF P = 0.0186. ¢,d, Quantification
of theindicated immune cell subsets and frequencies of activated (CD44"
CD62"), proliferating (Ki67") and IFN-y-producing TCRB* CD4* and TCRB* CDS8"
cellsin tumor samples shown in Fig. 8b in the indicated experimental groups

of mice analyzed on day 20. e, Representative HIF1a and TUNEL staining of KP
tumor sections. f, Quantification of HIF1a expression and apoptosis (TUNEL
staining) in KP tumor sections; staining areas and signal intensity normalized

by the total area and mean background intensity, respectively. 3-5 tumors from
each experimental group were analyzed. (PBS-IgG N = 5; DT-IgG N = 4; PBS aVegf
N=3; DT aVegf N =3) with four sections per individual tumor sample. Data
represent the mean + s.e.m. g, Proportion of intratumoral T, cells on day 20
after KP tumor transplantation. Data represent the mean + s.e.m. of one of two
independent experiments; N = 8. h, Tumor growth dynamics upon the indicated
therapeuticinterventions. Gray arrows indicate days of neutralizing antibody
administration. The data represent mean values of tumor volume measurements
(left). Adjusted Pvalues for day 20 measurements: IgG versus «CCR8 P< 0.0001;
IgG versus aVEGF P < 0.0001; IgG versus c CCR8-aVEGF P < 0.0001; aCCR8
versus aVEGF P=0.0434; «CCR8 versus aCCR8-aVEGF P=0.0044; aVEGF
versus aCCR8-aVEGF P < 0.000L1. i, Quantification of proportion and absolute
numbers of intratumoral and splenic T, cells following treatment (left) and the
corresponding T, cellnumbersinspleens in the treated animals (right). Data in

handirepresent the mean + s.e.m. of one of two independent experiments, IgG N
=10,CCR8 N =10, aVegf N =8, CCR8-aVegf N = 8. j, Tumor growth dynamics upon
theindicated therapeutic interventions (left). Gray and black arrows indicate
timing of neutralizing antibody and CCR2 inhibitor (CCR2i) administration,
respectively. The datarepresent the mean + s.e.m. values of tumor volume
measurements. Adjusted Pvalues of day 20 measurements: IgG versus aCCR8
P=0.0009;IgG versus a VEGF P < 0.0001; IgG versus CCR2i P< 0.0001; 1gG
versus aCCR8-aVEGF P< 0.0001; IgG versus aCCR8-CCR2i P < 0.0001; xCCR8
versus aVEGF P=0.9982; aCCR8 versus CCR2i P = 0.6138; «CCR8 versus aCCR8-
aVEGF P<0.0001; aCCRS8 versus a CCR8-CCR2i P=0.0041; aVEGF versus CCR2i
P=0.9551; aVEGF versus aCCR8-aVEGF P=0.0003; aVEGF versus xCCR8-CCR2i
P=0.0363; CCR2i versus aCCR8-aVEGF P = 0.0018; CCR2i versus aCCRS8-

CCR2i P=0.2271; aCCR8-aVEGF versus ac CCR8-CCR2i P = 0.4530. Plots include
data from two independent experiments combined with nine animalsin each
groupinexperiment1(IgGN=9,aCCR8 N=9,aVEGF N =9, CCR2i N=9, aCCR8
N=aVEGF-9, aCCR8-CCR2i N =9) and 4-6 animals per group in experiment 2
(IgGN=4;CCR2i N = 6; CCR8-CCR2i N = 6).k, Kaplan-Meyer survival curves
followed by Log-rank (Mantel-Cox) of KP tumor-bearing mice. The ‘survival’ time
reflects the end point of the experiment when tumor volume in individual mice
reached 1 cm?®. Adjusted Pvalues: IgG versus «CCR8 **P < 0.0001; IgG versus

o VEGF **P < 0.0001; IgG versus CCR2i ***P < 0.0001; IgG versus « CCR8-aVEGF
***P < 0.0001; IgG versus aCCR8-CCR2i ***P < 0.0001; aCCR8 versus aVEGF
P=0.5687 (NS); aCCR8 versus CCR2i P=0.7411 (NS); «CCR8 versus aCCRS8-
aVEGF **P=0.0002; cCCR8 versus aCCR8-CCR2i P=0.0342; aVEGF versus
CCR2i P=0.8054 (NS); aVEGF versus aCCR8-aVEGF ***P = 0.0006; « VEGF versus
aCCR8-CCR2i P=0.0666 (NS); CCR2i versus cCCR8-aVEGF ***P=0.0003;
CCR2iversus aCCR8-CCR2i P=0.6749 (NS); aCCR8-aVEGF versus «CCR8-CCR2i
*P=0.0489.Plots include data from two independent experiments combined
with5-11animalsineach groupin experiment1(IgGN=9,aCCR8 N=9; aVEGF
N=9;CCR2iN=11; xCCR8-aVEGF N = 9; xCCR8-CCR2i N = 5) and 4-10 animals
per group inexperiment 2 (IgGN=7; CCR2i N=10; CCR8-CCR2iN=4).Inb-d,
handi, plots are representative of one of two experiments with 8-10 mice per
group each, at day 20 after transplantation. Number of mice per groupinband c:
PBS-1gGN=10; DT-IgG N =10; PBS-aVEGF N =9; DT-aVEGF N = 9; number of mice
pergroupinhandi:IlgGN=10; xCCR8 N=10; aVEGF N = 8; xCCR8-aVEGF N = 8.
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Discussion

Successes in therapeutic targeting of PD-1and CTLA-4 pathwaysin T
lymphocytes are viewed as clinical evidence supporting the notion
of cancer surveillance by cells of the adaptive immune system akin
to that of pathogens. On the other hand, a growing realization of
the important roles immune cells play in supporting normal tissue
function, maintenance and repair suggests an alternative, even if not
mutually exclusive view of tumor-immune interactions. Within the
latter framework, the TME can be considered as a tissue-supporting
multicellular network, whichin response to cues emanating from can-
cerous cells supports their growth. In this regard, cancer represents
aspecial state of a parenchymal cell, whose support by bothimmune
and non-immune cells is guided by common, yet poorly understood
principles of tissue organization. T, cells suppress immune responses
directed against self-antigens and foreign antigens to protect tissues
from inflammation-associated loss of function'. Besides this indirect
tissue-supporting functionality, T, cells were alsoimplicated in direct
responses toinjury and other forms of tissue damage through produc-
tion of tissue repair factors'***~** suggesting that these functions of T,
cellsare conserved. Furthermore, T, cells were shown to supportskin
and hematopoietic stem cell niches™****, Therefore, it is reasonable to
assume that in human solid organ malignancies and in experimental
mouse cancers T, cellslikely play similar dual roles supporting tumor
growth-promoting accessory cell states.

Here, we showed that T, cells have a profound impact on states
of key accessory cells in a genetic autochthonous mouse model of
NSCLC, in an experimental model of lung injury and in human LuAds.
Using robust unsupervised data-driven computational analyses, we
found that T, cells support conserved gene programs—factors—across
experimental models of lung cancer and injury, suggesting their role
in coordinating broad, shared accessory cell functions that extend
to various conditions and tissue states. The latter included human
immunomodulatory C1Q* (CFH, CRIL,LAG3,PDCDILG2, LILRB4, IL18BP)
and SPP1/FOLR2 macrophage factors and their mouse counterparts,
which were positively associated with the T, cell presence. A similar
macrophage gene program is also reported to be enriched in NSCLC
lesions* and sustained by T,, cellsin mouse models of melanomaand
breast cancer*®.

Our analysis of the distribution of activated cell types and gene
expression programs with respect to their localization within and
around tumor nodules showed high concordance of characteristic
gene programs that were identified by scRNA-seq and ST analyses
in situ. Notably, T, cell depletion induced the IC response program
localized to tumor nodule cores, while the IFN response program
was most notable in the margins of tumor foci. The display of these
programs by multiple cell types present within the same local niche
suggests that they are elicited by common signals (‘signal niche’), for
example, hypoxiaresponse in the tumor nodule cores and a transient
burst of IFN-y produced by CD8" T cells and NK cells concentrated in
the tumor margins*. We also observed heterogeneity between T, cell
depletionresponsive and nonresponsive tumor focidistinguished by
the presence or paucity of the IC gene program. Interestingly, tumor
nodules that failed to induce the IC gene program in response to T,
celldepletion expressed Sox9 in agreement with arecent study where
upregulation of Sox9 in human LuAd conferred resistance to NK cells”.

Among the conserved gene programs negatively associated
with T, cell presence in mouse and human lung cancer, we noted the
VEGF signaling pathway. This included increased expression of VEGF
signaling-related genes in endothelial cells and increased expres-
sion of VEGF-A in myeloid and other cell types. This most likely rein-
forces the immunosuppressive TME providing support for tumor
growth consistent with a recent report of tumor ischemia caused by
the transient spike in intratumoral IFN-y following CD25 antibody
photoimmunotherapy-induced T, cell depletion®. In addition,
lung EC-derived VEGF was shown to specify development of CAR4"

endothelial cells and promote vascularization and tissue regenera-
tion following injury***°. VEGF has also been suggested to exert an
immunomodulatory effect on cells of theinnate and adaptiveimmune
system®. Considering VEGF targeting being an approved therapy for
some human cancers, combined VEGF-A and T, cell targeting serves
as a proof-of-concept for a rational combination therapy instructed
by the new knowledge of TME transcriptional connectivity. While
near complete loss of the T, cell pool in KP-DTR mice led to systemic
autoimmunity and inflammation, VEGF blockade coupled with CCR8
antibody-mediated depletion ofintratumoral T, cells showed impres-
sive therapeutic efficacy with no adverse effects. The latter owes to the
fact that CCR8 expression is selectively enriched in highly activated
intratumoral T, cell subsets in human and mouse malignancies®?%%.
Our observation that acombination of CCR8 antibody-mediated intra-
tumoral T, cell depletion with CCR2blockade did notyield additional
benefitincomparisonto the corresponding monotherapies suggests
that the latter either directly or indirectly converge on ashared regula-
torynode and highlights the utility of preclinical selection of combina-
torial therapeutic strategies informed by scRNA-seq and ST analyses
of early TME responses.

Our study highlights a generalizable approach where perturba-
tion of agiven cell populationin an engineered genetic cancer model
enabled computational learning of its ‘connectivity’ and influence on
the TME and other diseased tissue states, which could then be com-
pared to the human clinical settings. A surfeit of secreted and cell
surface molecules has beenimplicated in T, cell-mediated immuno-
suppressive and tissue-supporting functions. However, none of these
individual modalities can predominantly account for the bulk of these
functionalities. Combinatorial targeting of these putative mediators
will enable elucidation of the molecular mechanisms of the observed
T, cell dependencies in the TME. Our results suggest that T, cells
serve as an essential component of a complex network of accessory
cells of both hematopoietic and non-hematopoietic origin. Shared
perturbationsintheir transcriptional states observed across the three
different settings imply that the identified interdependencies of T,
cellsand other components of tissue-supporting cellular networks are
conserved and canbe exploited to develop new strategies for rational
therapies of cancer and other diseases.
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Methods

Experimental model and mouse details

Mice. Animals were housed at the Memorial Sloan Kettering Cancer
Center (MSKCC) animal facility under specific pathogen-free condi-
tions according toinstitutional guidelines. All studies were performed
under protocol 08-10-023 and approved by the MSKCC Institutional
Animal Care and Use Committee. Mice used in this study had no previ-
ous history of experimentation or exposure to drugs. Foxp3°"""™®and
Kras'“° Trp53"" mice were previously described'*>, Adult male and

female mice (6 weeks or older) were used for all experiments.

Lung adenocarcinoma and bleomycin-induced fibrotic injury induc-
tion. Crerecombinase-mediated induction of KP LuAds was previously
described™. Briefly, mice were anesthetized with a 160-180 pl keta-
mine-xylazine mixture and infected with Cre recombinase-expressing
adenovirus (1 x 10® plaque-forming units) viaintratracheal administra-
tion. Tumors developed within approximately 3 months. For the induc-
tion of fibrotic injury, pharmaceutical-grade bleomycin (Fresenius
Kabi) was administered intranasally to anesthetized mice (0.06 U per
mouse). For thes.c. KP tumor growth model, KP cells were resuspended
insterile PBS and injected to the flank subcutaneous space (1 x 10 KP
cellsin200 pl per mouse).

Diphtheria toxin, VEGF, PD-1, CCR8 antibody and CCR2i treatments.
DT (List Biological Laboratories) was administered to mice (1 pg per
mouse in PBS) via retro-orbital injection twice on two consecutive
days. For tumor transplantation experiments, DT was injected on days
8 and 9 after tumor s.c. transplantation. Mouse polyclonal neutral-
izing VEGF-A antibody (R&D clone AF-493-M) or control IgG (BioXcell
clone BEQ130) were injected on days 9, 12 and 15 (20 pg per mouse
per injection) with or without DT, or on days 8, 10, 12, 14 and 17 with
or without CCR8 antibody (BioLegend clone SA214G2; 240 pg per
mouse per injection). PD-1 antibody (BioXcell clone BEO146) alone
or in combination with VEGF-A antibody was administered on days
8,10,12,14 and 17 (250 pg per mouse per injection). RS-504393 CCR2
inhibitor (CCR2i; 2517, Tocris) was administered (50 mg per kg body
weight) daily in combination with CCR8 antibody, VEGF-A antibody or
their combination. Inthese experiments, CCR8 and VEGF-A antibodies
were administered on days 8,10 and 12, and CCR2i was administered
daily starting on day 8 and ending on day 12.

Human lung adenocarcinoma samples. Individuals with LuAd under-
going a surgical resection or tissue biopsy at MSKCC were identified
and biospecimens collected prospectively from 2017 to 2020. All par-
ticipants from whom biospecimens were obtained provided informed
consent for an MSKCC-wide biospecimen collection and analysis pro-
tocol. Recruitment was designed to capture a wide, unbiased swath
of heterogeneous disease, with a slight emphasis on EGFR-mutated
tumors with a high propensity to transform to more aggressive sub-
types. Biases may be present related to this recruitment design, the
race, sex, smoking status and the general population of MSKCC. Use of
all participant material and datadescribed in this paper was performed
under ethical approval obtained from the MSKCC Institutional Review
Board (study nos. 06-107 and 12-245). Only continuous trends between
cell proportion and factor use were assessed across all participants
and therefore controls based on sample groupings are not relevant.

Cellisolation and flow cytometry. For isolation ofimmune and stro-
mal cells, lungs were perfused, placed into 5 ml microcentrifuge tubes
containing 400 pl of cold serum-free RPMI and chopped with scis-
sors (1-2 mm). Lung fragments were placed in 2-3 ml of pre-warmed
digestion medium (RPMI 1640, 10 mM HEPES buffer pH 7.2 to 7.6, 1%
penicillin-streptomycin, 1% L-glutamine, liberase (Sigma-Aldrich,
05401020001) and 1U m1™ DNase I (Sigma-Aldrich, 10104159001;
2-3 ml)) and incubated for 30 minat 37 °C. After digestion, supernatant

was collected and cellswereresuspendedinice-cold RPMI1640 contain-
ing 5% FCS (Thermo Fisher,35010CV),1 mMHEPES pH7.2t0 7.6 (Corn-
ing, MT25060Cl), 1% penicillin-streptomycin (Corning, MT30002CI)
and 200 mM L-glutamine (Corning, MT25005CI). After additional
digestion for 1 h of the remaining tissue, both digested cell fractions
passed through a100-pm strainer (Corning, 07-201-432), washed and
FACS sorted. For cell isolation from transplanted KP tumor-bearing
mice, tumors were placed into 5 mlmicrocentrifuge tubes containing
400 plof cold serum-free RPMI1640, chopped with scissors andincu-
bated in digestion medium containing 1 mg ml™ collagenase (Sigma,
11088793001) and 1 U mlI™ DNase I (Sigma-Aldrich, 10104159001) and
beads on a shaker at 37 °C for 1 h. For cytokine production measure-
ments, cells were incubated at 37 °C, 5% CO, for 3 hiin the presence of
50 ng ml™ phorbol-12-myristate-13-acetate (Sigma-Aldrich, P8139),
500 ng ml™ ionomycin (Sigma-Aldrich, 10634), 1 ug ml™ brefeldin A
(Sigma-Aldrich, B6542) and 2 uM monensin (Sigma-Aldrich, M5273).
Cells were stained with Ghost Dye Red 780 (Tonbo Bioscience, 13-0865)
or Zombie NIR Flexible Viability Kit (BioLegend, 423106) and a mixture
of fluorophore-conjugated antibodies for 30 min at 4 °C cells, washed
and fixed with 1% paraformaldehyde (Electron Microscopy Sciences,
15710). For intracellular staining, cells were fixed and permeabilized
withthe BD Cytofix/CytopermKit or with the Thermo Fisher Transcrip-
tion Factor Fix/PermKitaccording to the manufacturer’sinstructions
and analyzed onaBD LSR I flow cytometer or sorted onaBD Ariall flow
cytometer. Post-sort cell purity was routinely higher than 95%. Flow
cytometry data were collected onan LSR Il using FACS Diva v8.0 (BD),
or on Aurora using SpectroFlo v2.2.0.3 (Cytek). Flow cytometry data
were analyzed using FlowJov10.6.1(BD).

Immunofluorescence microscopy, histological and spatial tran-
scriptomic analyses. Perfused lungs were fixed for 1h at 22 °C in 4%
paraformaldehyde and dehydrated at4 °Cin 30% sucrose, snap-frozen
in OCT compound (Sakura Tissue-Tek, 4583). For ST, samples were
flash frozen without fixation. All samples were sectioned with a Leica
CM1950 Cryostat at -2 °C, toathickness of 10 pm. Sections were fixed
in acetone for 20 min at —20 °C, rehydrated in PBS, blocked with 10%
normal donkey serum (Jackson ImmunoResearch, 017-000-121) in PBS,
0.3% Triton X-100, and stained overnight with fluorophore-conjugated
antibodies at 4 °C in a humidified chamber. Thereafter, nuclei were
stained with DAPI (5 mg ml™; Abcam, 28718-90-3) or Draq7 (5 pM;
Abcam, 109202) for 20 min at 22 °C. Sections were imaged in Slow-
Fade mounting medium (Life Technologies, S36938) using a confocal
Leica SP8 microscope. For histology, tissues were fixed in 10% neu-
tral buffered formalin, embedded in paraffin, and sectioned. For the
TUNEL assay, sections were processed under standardized conditions
using the DeadEnd Fluorometric Detection System (Promega, G3250),
and subsequent immunohistochemistry was carried out using BOND
Polymer Refine DetectionKit (Leica, DS9800), according to the manu-
facturer’sinstructions. AllImages were processed and analyzed using
Image]J package v2.0.0-rc-69/1.52p. Distances between cells of interest
were quantified following the same strategy and using similar code as
described elsewhere™,

Antibodies. See Supplementary Table 20 for all antibodies used in
this study.

RNA-seq library preparation and sequencing. Cell populations
were sorted straight into TRIzol (Thermo Fisher, 15596018), RNA was
precipitated withisopropanoland linear acrylamide, washed with 75%
ethanol, and resuspended in RNase-free water. After RiboGreen quan-
tification and quality control by Agilent BioAnalyzer, 0.4-2.0 ng total
RNA with RNA integrity numbers ranging from 1.0 to 9.9 underwent
amplification using the SMART-Seq v4 Ultra Low Input RNA Kit (Clo-
netech, 63488), with12 cycles of amplification. Subsequently, 1.5-10 ng
of amplified cDNA was used to prepare libraries with the KAPA Hyper
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Prep Kit (Kapa Biosystems, KK8504) using 8 cycles of PCR. Samples
were barcoded and run onaHiSeq 4000 or HiSeq 2500 in rapid mode
ina 50 bp/50 bp paired-end run, using the HiSeq 3000/4000 SBS Kit
or HiSeq Rapid SBS Kit v2 (Illumina). An average of 32 million paired
reads were generated per sample, and the percentage of mRNA bases
per sample ranged from 62% to 88%.

RNA-seq analysis. Paired-end RNA-seq reads were mapped to the
genome using STAR*? v2.7.3a. Gene annotations were downloaded
from Ensembl release 83, which is based on mouse genome assembly
GRCm38.Rv3.6.0 was used for generating count matrices and DESeq2
(ref. 53) was used for principal-component analysis, to identify DEGs
and for Spearman correlations calculations and for hierarchical clus-
tering and generation of k-means heat maps.

Single-cell RNA sequencing. Single-cell RNA-seq was performed on
FACS-sorted mouse lung KP cells or human LuAd samples, onthe Chro-
mium instrument (10X Genomics) following the user guide manual
(CG00052 Rev E) for 3’ v2 and v3 as previously described**. Briefly,
sorted cells were washed once with PBS containing 0.04% BSA and
resuspended in PBS containing 0.04% BSA to a final concentration
0f 700-1,200 cells per pl. Viability of cells was confirmed to be above
80%, as confirmed with 0.2% (wt/vol) Trypan Blue staining (Countess
II). Thensamples were encapsulated in microfluidic droplets at a dilu-
tion of ~70 cells per ml (doublet rate ~3.9%). Encapsulated cells were
subjected to a reverse transcription (RT) reaction at 53 °C for 60 min.
After RT, the emulsion droplets were broken and barcoded cDNA was
purified with DynaBeads MyOne SILANE, followed by 14 cycles of PCR
amplification (98 °C for 180's; (98 °C for 15's, 67 °C for 20 s, 72 °C for
60 ) x12cycles; 72 °Cfor 60 s). Then, 50 ng of PCR-amplified barcoded
cDNA was fragmented with the reagents provided in the kit and puri-
fied with SPRI beads to obtain an average fragment size of 600 bp.
Next, the DNA library was ligated to the sequencing adaptor followed
byindexing PCR (98 °Cfor45s; (98 °Cfor20s,54 °Cfor30s,72 °Cfor
20s) x10 cycles; 72 °Cfor 60 s). An average of 5,000 cells were targeted
for each tumor sample. The resulting DNA library was double-size
purified (0.6-0.8x) with SPRI beads and sequenced on an Illumina
NovaSeq platform (R1:26 cycles (KP), 28 cycles (LuAd); i7: 8 cycles; R2:
96 cycles (KP), 90 cycles (LuAd)) resulting in 184.5-186.1 million reads
per sample (average reads per single cell, 42,000; average reads per
transcript, 4.40-7.14; KP).

Visium spatial gene expression slides were permeabilized at 37 °C
for 12-18 min and polyadenylated. mRNA was captured by primers
bound to the slides. RT, second-strand synthesis, cDNA amplification
and library preparation proceeded using the Visium Spatial Gene
Expression Slide & Reagent Kit (10X Genomics PN 1000184) accord-
ing to the manufacturer’s protocol. After evaluation by real-time PCR,
cDNA amplification included 11-12 cycles; sequencing libraries were
prepared with 8 cycles of PCR. Indexed libraries were pooled equimolar
and sequenced onaNovaSeq 6000 inaPE28/120 run using the NovaSeq
6000 S1Reagent Kit (200 cycles; lllumina). An average of 219 million
paired reads were generated per sample.

Computational analysis of scRNA-seq data. For basic pre-processing
and lineage identification see Supplementary Methods. We performed
dimensionality reduction using principal-component analysis (specify-
ing 50 principal components (PCs); nPC = 50), then visualized the data
intwo dimensions 2D using -SNE on the PCs (perplexity parameter set
to 50 (KP) or 100 (injury)). The cells were grouped into clusters using
PhenoGraph'® onthe PC space, with k=30 (Extended Data Fig. 2b). We
established that clustering was robust to slight changesin k, by reclus-
tering the cellsunder varying k (k € (20, 25, 30, 35,40, 45)) and measur-
ing consistency using the adjusted Rand index (using the sklearn
package in Python), obtaining an average Rand index > 0.85. To anno-
tate each cluster as a specific lineage, we computed the average

expression of known lineage markers (Extended DataFig. 2c,d). All the
genes used for annotation are listed in the heat map**>>-°,

For human LuAd samples, non-empty droplets were defined using
CellBender on a per-sample basis®. The expected number of cells was
defined by SEQC output after theinitial quality filters described above,
plus 25,000, to ensure an adequate number of empty dropletsin each
human sample. A learning rate of 0.0001 (modified to 0.00005 for
samples needing a slower learning rate) was used with 300 epochs.
Viable cells were identified with a library size greater than 500 UMIs,
gene number greater than 250, log,, genes per UMI greater than 0.8
(complexity), and less than 20% mitochondrial transcripts.

UMI counts from non-empty droplets with doublets removed
were normalized by first dividing by the library size (UMI counts per
droplet), multiplying by a scale factor of 10,000, and then taking the
naturallogarithm of 1+ the normalized counts. Before dimensionality
reduction and clustering, genes werefiltered out if they were detected
inless than 10 cells, had low transcript annotation quality (transcript
support level 4 or 5in Ensembl 85), or belonged to categories includ-
ing mitochondrial transcripts, highly expressed ncRNAs, ribosomal
RNAs, immunoglobulin transcripts, hemoglobin genes or T cell antigen
receptor variable regions. This resulted in 18,597 retained genes and
84,909 cells. The median total counts and number of cells per sample
are listed in Supplementary Table 11.

Doublet detection. For all mouse model samples, we performed
doublet detection using Scrublet®® with default parameters (that is,
expected_doublet_rate = 0.06, min_counts =2, min_cells =3, min_gene_
variability_pctl =85, log_transform =true, n_prin_comps =30) oneach
sampleindividually.Since we were more interested in analyzing specific
lineages, we removed doublets when processing each lineage individu-
ally (as described below).

Inhumansamples, doublets were identified on non-empty drop-
lets for each sample individually using DoubleDetection (https://doi.
org/10.5281/zenodo0.2678041) with a P-value threshold of 1 x 107 and
avoter threshold of 0.8. This algorithm was used because of its higher
relative accuracy among doublet detection methods®’, important for
consistency across heterogeneous sample mixtures. Doublets were
removed before lineage identification.

Density plots. For analysis of individual lineages (mouse samples), see
Supplementary Methods. ¢-SNE plots are valuable to build a hypoth-
esis but it can be difficult to glean the density of cells from different
conditions due to cells (dots) overlapping on top of each other. To
complement the ¢-SNE plots (colored by conditions such as Fig. 2b,e)
and further highlight the finding that T, cell depletion has different
effectsin different cell populations, we chose to represent the distribu-
tion of the cells in the ¢-SNE plot using a density plot. We used the kde-
plotimplementationin Seaborn package in Python (with non-default
parameter thres = 0).

scRNA-seq differential expression. Differential expression test-
ing between tumor cells of control or DT conditions was performed
using MAST®* on log-normalized values. Only genes in at least 10%
of cells in either condition and a minimum log fold change of 0.25
(2,654 genes) were used as input. Significant genes were defined as
adjusted Pvalue < 0.05and log fold change > 0.5. Gene-set enrichment
analysis was performed using fgsea® with log fold-change values of
significant genes. Gene sets derived from tumor clustering inwork by
Marjanovic et al.”” were used to assess enrichment (Extended Data Fig.
8g; scrna_tumor_de_fgsea).

Milo analysis. Milo incorporates information from biological rep-
licates to assign a P value for fold changes in neighborhood cellular
abundance between experimental conditions, where neighborhoods
are defined as regions of transcriptionally similar cells in a k-nearest
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neighbor (kNN) graph generated. This method provided us with rigor-
ous statistics to compare the frequency of different transcriptional
states between conditions.

For each lineage, we sought to quantify the changes in density
of control and DT cells in each neighborhood in the kNN graph using
Milo™. Conceptually, Milo is analogous to differential gene expression
analysis, butinstead of identifying genes that are differential between
two groups of cells, Milo tests for differential cell density in (possibly
overlapping) neighborhoodsinthe kNN graph, across different condi-
tions. Milo also considers the originating sample of each cell and treats
any batch effect as a covariate. However, since we did not observe sig-
nificant batch effects in our data, the design matrix we supplied only
included the sample identity and experimental condition of each cell.

To performthe analysis, we first constructed akNN graph (k = 30)
on PCsusing the buildGraph functionin Milo. For each lineage, we used
the same number of PCs (nPCs = 50) as for clustering and cell-type
annotation above. We constructed neighborhoods on top of the KNN
graph using the Milo makeNhoods function with default parameters
(prop = 0.1, refined = true), then counted cells in each neighborhood
using the countCells function and assessed statistical significance
using testNhoods and calcNhoodDistance for spatial FDR correction.
We used default parameters in all these cases. Results were then visu-
alized using the plotNhoodGraphDA function with alphasettolinall
cases (implying that neighborhoods with spatial FDR <1are coloredin
allvisualizations). We further assigned each neighborhood toacell type
ifmore than 80% ofthe cellsin it belonged to that cell type; otherwise,
the neighborhood was termed ‘mixed’.

Factor analysis. To identify gene programs and their usage across
cells, we used the scHPF package”. scHPF is a Bayesian factorization
method that explicitly models sparsity in scRNA-seq count data, using
hierarchical Poisson factorization to achieve positive-valued loadings
across aselected number of factors for individual cells and genes. The
method provides gene scores, which assign each geneascore for gene
membership in a factor, and cell scores, which quantify the usage of
each factor by acell. Cells with high cell scores for afactor will use the
gene programrepresented by that factor at higher levels; the gene pro-
gram, inturn, consists of genes with high gene scores for that factor. In
the context of response to T, cell perturbation in cells from different
lineages, scHPF provided an ideal unsupervised and data-driven way
to extract gene programs (factors) that are systematically altered by
the perturbation.

Inthe mouse tumor samples, scHPF was run using default hyperpa-
rametersin the endothelial, fibroblast and myeloid lineages to obtain
20 endothelial-specific factors, 25 fibroblast-specific factors and 25
myeloid-specific factors.

Differential factor usage between diphtheria toxin and control. We
expect that the coordinated gene program response to the impact of
T, celldepletion should reflect as factor cell scores being differential
between control and DT conditions. To quantify this, we computed the
average cell score of every factorin each cluster of cells (grouped by the
celltype theybelongto) for each condition. Thisresultis presented asa
heat mapinFig. 2i for endothelial cells, Extended Data Fig. 5a for fibro-
blasts, Extended Data Fig. 5¢ for myeloid cells in the tumor model and
Fig.3g forendothelial cellsinthe bleomycininjury model. Investigating
averagesatthecluster level ensures that any factors that reflect subtle
shiftsin cell states withina cell type will be identified. We then studied
those factors that have higher averages in DT compared to control.
To ensure that our factors are significantly differential between
control and DT, we considered cell scores for each factor ineach cluster
and computed Pvalues between the two conditions usinga Mann-Whit-
ney Utest as implemented in the scipy.stats.mannwhitneyu package
in Python. The Pvalues are reported in Supplementary Table 6. We
then considered factors that were robust to random initialization of

scHPF (Supplementary Fig. 1 and ‘Robustness analysis of factors’),
were biologically relevant and had Pvalues < 0.01for further analysis.

Robustness analysis of factors. We assessed the robustness of the
obtained factors in two ways. First, we sought to ensure that the
obtained factors were robust to random initializations. For this, we
fixed the number of factors computed and reran the model for 20
iterations. To quantify the similarity across iterations, we computed
Pearson correlation (forbothgene and cell scores) between best match-
ing factors between iterations. The best matching factors between
any two iterations were identified using an implementation of the
Hungarian®® matching algorithm. The algorithm matches each factor
from one iteration to the best matching factor from a second itera-
tion such that the total cost is minimized, where the cost is defined as
(1- pairwise correlation score between two iterations). We used the
Python (v3.8) implementation of the linear_sum_assignment function
in the optimize module of SciPy package (v1.7.1). After matching, we
reported the median correlation score between pairs of iterations
(Supplementary Fig.1).

Second, we sought to ensure that the factors we identified in our
analysis (highlighted inred in Figs. 2iand 3g and Extended Data Fig. 5a,
c¢) as being different between control and DT conditions (‘Differential
factor usage between diphtheria toxin and control’) were robust to
changes in parameters, mainly the choice of number of factors. This
test ensures that the obtained factors were not identified by chance
and that they constitute robust signalin the data. For this, we fixed the
number of factors computed above (thatis, 20 factors for endothelial,
25 factors for fibroblasts and 25 factors for myeloid) as the baseline.
Then, we reran scHPF for a range of number of factors (around the
chosen value) and computed correlations with the specific factors
of interest. To compute the correlation to the best matching factor,
we used the same strategy of the Hungarian matching algorithm as
described above. The average correlation over 20 such iterations was
thenreported (Supplementary Fig.1).

We repeated the same computation to assess the robustness of
chosen factorsin the bleomycininjury model.

Comparison ofhuman and mouse factors. In human samples, scHPF
wasrunwith default hyperparameters and tenrandomi initializationsin
the endothelial, fibroblast and myeloid lineages, using raw UMI counts
for genes expressed in at least 1% of cells within the lineage. This left
12,533 genes in the endothelial lineage, 13,216 genes in the fibroblast
lineage and 12,253 genes in the myeloid lineage for factor analysis. To
select the number of factors for downstream analysis, scHPF was first
run with two more factors than the number of PhenoGraph clusters
within the lineage, then subsequently increased nine times by steps
of one, for atotal of nine separate factorizations (thatis, k= (17,18,19
... 250). To achieve consistent granularity across lineages, we chose
the factorization in which ~-90% of the variance in a cells’ expression
(on average) was explained by the top 7 factors, given by 22 factors
for endothelial and fibroblasts lineages and 27 factors for myeloid
lineage cells.

After matrix factorization in human samples, we identified gene
programs associated with T, cell presence in LuAd tumors by calcu-
lating the Spearman correlation between the log, average factor cell
score and log, T, cell proportion of CD45" cells in each sample. This
calculation was also performed using the T, cell proportion of CD3*
cellsineachsample to ensure consistency; however, the T, cell propor-
tion of CD45" cells arereferenced in the primary results (Extended Data
Fig.9a). We assessed the stability of gene programs using a similar strat-
egytothat used for mouse above, and robustness of factor associations
to T, cell presence was assessed by the same correlation calculation
using matched factors in a separate run of scHPF factorized using a
different value of k. The relationship of factors across lineages was
assessed by the pairwise Spearman correlation of log, average factor
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cell scores in each sample from one factor to all other factors. Only
samples with enough representative cells were used for correlation
analysis in each lineage (>5 cells in endothelial and fibroblast, >20
cells in myeloid). Sample 16 was removed from all factor correlations
duetooutlier values driven by high IFN signatures, and sample 17 was
removed from endothelial correlations due to outlier values driven
by low cell numbers.

To identify conserved gene programs (factors) in endothelial,
fibroblast and myeloid cells between human and mouse tumors, we
compared the gene scores of orthologous genes. First, the genes used
for factorization were filtered for orthologs that had a one-to-one
correspondence between species (Ensembl 85 annotations) and were
expressed in both species. A gene was assigned to a factor if its gene
score was two standard deviations greater than the mean of gene
scores for all genes in that factor. Then, aJaccard similarity score was
calculated between all mouse and human factors of a given lineage
by dividing the number of shared assigned genes by the number of
unique assigned genes in each pair of factors. The z-score of Jaccard
values for all human factors against each mouse factor was used to
identify human factors with greater homology toamouse factor than
background. Typically, aJaccard similarity score greater than 0.06 in
the endothelial lineage and 0.07 in the fibroblast and myeloid lineages
and would define one (and no more than three) factors in human with
homology to amouse factor.

The validity of factor mappings across species was assessed by
examining the genes shared between conserved factors to ensure they
belonged to coherent biological programs (inflammation, angiogen-
esis, and so on). To find genes with similarly high scores across con-
served factors, wenormalized the gene score for each gene by the sum
of its scores across all factors (fraction of total gene score), which also
enabled comparison across factorizations. This was used to compare
T, cell-associated inflammation and hypoxia programsinFig. 4g; we
compared normalized gene scores from the sum of humanfactors4 and
5tothoseinmouse factor15, as these corresponded to the same under-
lying biological process across species (see below). In Fig. 4g, genes
were listed as conserved ifthey were assigned (as described above) to
both the human and mouse factors being compared. VEGF-regulated
genes in endothelial cells were identified using gene sets derived by
Dhainaut et al.”’ with data from the CytoSig database, which houses
public cytokine response datasets for many cell types and treatment
pairs (https://cytosig.ccr.cancer.gov/).

In certain cases, gene or cell scores for several factors were
summed to relate an underlying biological process to similar gene
expression programsin mouse (as above) or T, cell proportionacross
human participants. An underlying biological process (for example,
inflammation) could be split across several factors due to similar but
nonoverlapping expression programs (for example, cell-type-specific
signaling) or very similar expression programs with sample-specific or
condition-specific effects. Comparisonsincluding only partial signalin
these cases, when only a single factor was compared to another entity,
could mask associations to the broader biological program. In Fig. 4f,
we summed cell loadings for human endothelial factors 3,4 and 5 to
relate the conserved T, cell-responsive endothelial expression pro-
gram to T, cell proportion across tumor samples. We reasoned that
these factors were related to a shared underlying biological process
because they were each individually negatively associated with T,
cell proportion across samples to various degrees (Extended Data
Fig. 9¢), and their genes aligned with different components of T,
cell depletion-induced expression program in mouse tumors: factor
3, aCap; factor 4/5, inflammation and hypoxia with features of the
mouse activated VEC (Fig. 4e). Additionally, factors 4 and 5 shared
inflammation-relevant genes (/L6, CSF3) but with different sample
specificities, whichindicated that sample-specific effects rather than
the underlying biology could have separated this gene program across
two human factors (Extended DataFig. 9d). Therefore, asummed factor

score was found to be more appropriate in capturing certain endothe-
lial gene program relationships to T, cell proportion.

Expression heat maps

Once we identified the factors of interest in each of the cell types,
based on our definition of higher average cell score in DT compared
to control conditions, we zoomed into the genes that contributed the
most to those factors. We were particularly interested in understand-
ingthegenesthatdrive the factor scoreinaspecificsubpopulation of
cells. In our analysis, we sought to focus on specific subtypes with the
highest average cell score for the factor. As such, we isolated the cell
types ofinterest and correlated the factor usage (cell scores) with gene
expression. Details of the subsetting are provided in Supplementary
Table19. Toelaborate, we provide an example: we identified factors 9,
14 and22tobeenrichedin DT-treated cells compared to controlin the
fibroblast subpopulationinthe mouse tumor model. These factors had
the highest cell usage scores among the COL14Al subtype. Therefore,
toidentify genes thatare driving these factorsand ensure that we focus
ongene programs specific to the COL14Alsubtype, we subset this cell
type of interest and correlate factor usage with gene expression. In
cases where the cell type of interest was small (for example, the inflam-
matory capillary subsetin endothelial cellsin the mouse tumor model),
we subsetted the cell type of interest combined with the phenotypically
most similar cell type (for example, we grouped the inflammatory cap-
illary subset with aCap in the mouse tumor model endothelial cells).
This ensured we had sufficient cellnumbers to compute the correlation
and allowed us to identify genes specific to the cell type of interest in
contrast toits nearest phenotypically similar subtype.

To this end, we correlated gene expression against the cell scores
inthe isolated set of cells and identified the top 200 most correlated
genes as being relevant to that factor for that specific subpopulation.
Toensurethatthe correlation scores were notinfluenced by any poten-
tial outliers (cells with deviant cell scores), we compared our results
against correlation computed between the imputed gene expression
andimputed factor cell scores (using MAGIC*, nPCs = 20, k=30, k, =10,
t=4).Inbothscenarios, we obtained highly similar results. The expres-
sion heat maps (Figs. 2i and 3i and Extended Data Figs. 5a,c, 6b and 7a,d)
display the result from imputed data.

We followed the same procedure for the bleomycin injury model
data.

Spatial transcriptomics

Read mapping and quantification. We processed Visium ST data with
the SpaceRanger pipeline from 10X Genomics (v1.3.1). The mkfastq
function was used to generate FASTQ files from raw base calls and the
count function was used in combination with a matched brightfield
H&E-stained image to align to a modified mm10 genome, perform
tissue detection and count UMIs for each spot. The modified genome
consisted of Ensembl 100 annotations with an added transcript to
detect DTR-GFP expressed from the Foxp3 promoter (sDTR-eGFP).
UMI counts were summed by gene symbol and sDTR-eGFP reads were
summed together with Foxp3. All analyses of differential cell-type abun-
dance or gene expression were performed in the first serial section of
eachbiological sample to preserve the independence of observations.
Gene expression counts were log normalized using SCTransform® with
Seurat (v4.1.1)** to compare between spots. Spots with fewer than 1,000
UMIs were excluded from analysis.

Deconvolution of Visium spots to cell-type RNA fractions. Visium
capturestranscripts fromsectioned tissue placed over 55-pum-diameter
spots, suchthat each spot sums gene expression from multiple cells. We
used the BayesPrism algorithm*?° to deconvolve cell types presentin
eachspotandtherebyimprove the effective resolution of the technol-
ogy. As input, BayesPrism accepts a spot-by-gene count matrix and a
scRNA-seq reference dataset labeled by cell type; it utilizes a Bayesian
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approach to jointly model cell-type fractions and cell-type-specific
gene expression within each Visium spot.

In our ST analysis, we used two separate sSCRNA-seq references
for deconvolution—one containing the small number of tumor cells
(N=239) capturedinourstudy (‘non-merged reference’) and another
containing cells from a separate study that sampled more tumor
cells (N=18,083) from specific tumor sub-states (‘merged reference’,
detailed below). The merged reference was used to assess the presence
ofgranular transcriptional states within tumors, while the non-merged
reference was used to study accessory cell populations without the
influence of batch effects (data from two separate studies) or con-
founding during deconvolution (limited resolution between normal
epithelial and certaintumor states, thatis, AT2 versus AT2-like tumors).
The non-merged reference includes scRNA-seq datasolely consisting
of cells from identical experimental conditions to the ST data (KP
tumor-bearing lungs treated with PBS or DT; data from Fig. 2) and
was used for all analyses in Fig. 4 and Extended Data Fig. 7c,e,f. Cell
fraction estimates from the non-merged reference were used to distin-
guish tumor spots from normal spots because of the better-matched
experimental characteristics, the capture of tumor cells from the T,
cell-depleted state and the lower chance of similarity to normal EC
types by using all tumor cells as a single reference population. The
cell-type fraction estimates of tumor sub-states from the merged
reference were used for analysisin Fig. 5 and Extended Data Fig. 8 only
in tumor spots defined using the non-merged reference. Additional
details of scRNA-seq reference construction and applications of the
cell-type fraction estimates are mentioned below.

Selection of cell types and marker genes. The accuracy and reli-
ability of cell fraction estimates depends on the presence of features
inVisium data that are specific to labeled populations (highly specific
cell-type markers give better deconvolution), the transcriptional dis-
tancebetween populations (better separated populations give better
deconvolution) and how closely matched the scRNA-seq reference is
with populations profiled in situ by ST. We thus optimized both gene
selection and cell-type label granularity in our scRNA-seq reference
and leveraged the ability of BayesPrism to encode separate cell states
withinapopulationto better match the reference inspecific conditions
(thatis, control versus T, cell depleted).

Feature selection before deconvolution can improve the
signal-to-noiseratio by removing genesthat areirrelevant to cell type but
behave similarly torelevant genes, and it canalso mitigate the influence
ofgenesthat change due to batch effects. We therefore chose to focus on
cell-type marker genes in our deconvolution, which is arecommended
option in BayesPrism. Marker genes were computed by conducting
pairwise t-tests across cell types (findMarker function in SCRAN) using
log-normalized data. We defined marker genes by aminimum Pvalue of
0.05and minimum log fold-change value of 0.25 across all comparisons.
Genes with fewer than ten counts across all Visium sections, or those
detected in fewer than five cells in scRNA-seq data, were removed in
additionto ribosomal genes, mitochondrial genes and genes associated
with the cell cycle (https://github.com/dpeerlab/spectra/).

We merged highly similar cell typesto avoid confounding deconvo-
lution. To ensure adequate resolution between cell types, we computed
marker genes as described above, starting at the most granular level of
annotation and iteratively merging cell populations with their closest
neighbor (by transcriptional distance), until each cell population had
at least 30 marker genes. This included collapsing Artery/Vein with
gCap cells (labeled as gCap); CD8" T cells, effector T cells, exhausted
CD8" T cells, MAIT, gdT, T;2, naive T cell, activated T cell, T, and ILC2
populations (T cell/ILC2); B and plasma cells (B cells); monocyte and
Csf3r" monocytes (monocyte); cDCland cDC2 (cDC); and Csf3r* neu-
trophil, Ccl3* neutrophil, and Siglecf* neutrophil (neutrophil). We
further merged the inflammatory capillary population withaCap cells
(aCap), and Argl* with C1q* macrophage populations (macrophages),

astheseare arguably specialized cell states of the same overarching cell
type. Cycling T cells were also removed to prevent misassignment to
tissue regions withincreased expression of cell cycle-related genes. The
resulting filtered scRNA-seq reference comprised 4,219 marker genes
and 23,178 cells labeled as 26 cell populations (see Extended Data Fig.
7afor full list of cell populations included).

While our feature selection strategy ensured adequate resolution
between cell types, transcriptional heterogeneity within cell types can
alsoinfluence deconvolution. BayesPrisminitially performsinference
atthe cell-state level, which can account for condition-specific hetero-
geneity intranscriptional states within cell types during deconvolution.
Cellstates can be captured by the algorithm through cell-type-specific
expression estimatesbut canalso beincluded aslabelsinthe reference
data. We observed substantial transcriptional shifts in accessory cell
populations between control and T, cell-depleted conditions by
scRNA-seq (Fig. 2 and Extended Data Figs. 4 and 5), and thus labeled
cellsfrom these accessory populations to help capture heterogeneity
within cell types. Control and T, cell-depleted states were assigned
for aCap, gCap, LECs, Col13al* and Coll4al" fibroblasts, pericytes,
myofibroblasts, AT1, AT2, cDC, macrophage, alveolar macrophage,
neutrophil and monocyte populations in the scRNA-seq reference.
BayesPrism sums cell-state fractions at the cell-type level before the
final update step and downstream analysis.

Following cell-state definition, BayesPrism was runjointly on serial
sections, to allow sharing of information across more spots during the
final update step and filtering out of genes whose expression fraction
(reads/total reads) was greater than 0.01in10% of Visium spots. For the
robustness and reproducibility analysis, each section was deconvolved
independently.

KP tumor cells are known to adopt arange of recurrent cell states
as they progress”°. To assess tumor transcriptional states and their
relation to T, cell depletion, we performed a second deconvolution
using BayesPrism across Visium spots with a scRNA-seq reference
containing more granular tumor-state labels. Given the limited number
of tumor cells in our reference (239 cells), we decided to incorporate
scRNA-seq data from Yang et al.?®, which contains ~50,000 KP tumor
cells (referred to as KP-Tracer data), to more accurately assign general
states within tumor regions. A key advantage of BayesPrism is that it
can incorporate single-cell data from multiple sources, which do not
need tobe matched with our data. The algorithm uses cell typesin the
scRNA-seqreferenceasaprior for possible cell statesin the Visium data,
while disregarding cell-type fractions in the reference.

To minimize computational burden and sample-specific biases,
we processed the KP-Tracer data by removing mutation-specific and
mesenchymal cell states (these were largely sample-specific), and
downsampling the remaining tumor states to amaximum of2,000 cells
(for balanced sampling), leaving 18,083 cells. The original tumor-state
labels of EMT-1, EMT-2 and pre-EMT were combined (labeled as EMT),
aswere early gastric, late gastric and gastric-like populations (gastric)
to limit deconvolution to the most representative overarching tumor
states. These cells were combined with our accessory cell data in the
same count matrix, with tumor cells removed. Marker gene selec-
tion and gene filtering were performed as above but adding 24 genes
upregulated in AT2 cells relative to the AT2-like tumor state (t-test on
log-normalized scRNA-seq data with adjusted Pvalue < 0.001, log fold
change > 1, expressed in 15% more cells relative to AT2-like) to better
discriminate tumor from normal states. The final merged reference
contained 40,787 cellsand 4,546 genes after cell and feature selection,
and we ran BayesPrism deconvolution with it using identical settings
to the non-merged reference.

Visium data are very noisy. To discriminate robust evidence for
cell type, we only included cell-type fractions above background at
particular spots, using the same mixed-model strategy as the compute.
background function from SpaceFold*, with modifications detailed
below. Specifically, for each cell type in each tissue section, agamma
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mixture model with two components was fit for cell-type fraction
(gammamixEM from mixtools®’), and a Gaussian mixture model with
two components was fit for the summed deconvolved gene expression
values (Mclust from Mclust’) across all spots. Mixture model distribu-
tions were checked for agreement with datastructure by histogramand
overlay of the fitted distribution. After determining parameters for the
mixture components, we identified spots with >70% posterior prob-
ability of being assigned to the mixture component having the higher
mean and used the minimum value of these as athreshold for calling a
celltype ‘present’. Cell-type thresholds below 0.001werereset to 0.001,
and summed deconvolved gene expression thresholds below 50 were
reset to 50. To enable comparison across tissue sections and prevent
erroneous cutoffs due to tissue-specific composition, the median of
cellfractionand summed deconvolved gene expression cutoffs across
all eight tissue sections was used for each cell type. These values were
subsequently refined with the guidance of H&E staining (see below for
details). Illustrations of spot binarization for the presence of specific
celltypes are shownin Fig. 4a and Extended Data Fig. 7d,e.

Assessing robustness and accuracy. We assessed the robustness
and accuracy of cell-type RNA fraction estimates before proceeding
further with analysis downstream of our deconvolution. We performed
bootstrap analysis to determine robustness to the sparse capture of
Visium. Specifically, we ran BayesPrism on one tissue section with
each spot randomly downsampled to 90% of its reads, repeated this
20 times, and calculated the Spearman correlation of cell-type fraction
estimates between the original and each downsampled deconvolu-
tion. Cell fraction estimates across spots were highly consistent, with
Spearman correlations > 0.87 for all trials (Extended Data Fig. 7a). We
nextcompared average cell-type fraction between individually decon-
volved serial sections across all samples, validating the expectation
that cell-type fractions captured by serial sections are highly similar
(Spearman R =0.99; Extended Data Fig. 7b). To ensure consistency
between our two deconvolution approaches, we compared cell-type
fractions of non-tumor accessory cells with and without additional
tumor states from the KP-Tracer study in our scRNA-seq reference.
Average log(cell-type RNA fraction) values from each tissue section
were highly correlated (Spearman R = 0.97), suggesting that decon-
volved accessory populations were generally notinfluenced by tumor
RNA, and that the inclusion of tumor cells from a separate study did
notimpactaccessory cell deconvolution (Extended DataFig.7c). One
exceptionwasinresolving AT1-like and AT2-like epithelial states, which
are highly similar to several of the added tumor states; the added states
likely improved their resolution in tumor regions, but notin non-tumor
regions, due to transcriptional similarity with normal epithelial states.

Cell-type assignment was cross-referenced with the underlying
tissue histology from matched H&E-stained brightfield imagesto con-
firmaccurate positioning of cell types where possible (Extended Data
Fig. 7d,e). For example, spots deemed to possess different capillary
types, pericytes and alveolar macrophages were consistent with the
literature and anatomical features (Extended Data Fig. 7d). gCap and
artery/vein cells were localized around blood vessels and alveoli, with
some penetration into tumor areas, whereas aCap cells were mainly
distributed over alveoli and surrounding tumor areas, consistent with
their propensity to surround areas of injury*®. Pericytes were localized
around blood vessels and bronchi, consistent with published annota-
tions®’, and alveolar macrophages were concentrated in areas sur-
rounding tumor regions, as previously shown®. LECs, DCs and B cells
are all expected in areas containing lymphoid aggregates emanating
fromalymphatic vessel and were indeed detected in these regions by
our ST analysis (Extended Data Fig. 7e). Moreover, regions represent-
ing part of an IC signaling niche were found to have higher neutrophil
cell-type fraction (Fig. 4f), which was readily apparent in the aligned
tissue section due to the unique appearance of neutrophils in H&E
staining (Fig. 5f).

Upon assessing marker gene expression and inspecting histology,
we noted that several cell types including AT2, gCap, MSCs, monocytes
and LECshad more modesin the distribution of their cell-type fractions
and summed deconvolved gene expression values across spots, likely
duetoregional variationin cell-type composition and read density. To
account for this variation, we reset the presence/absence thresholds for
these cell types as above but using mixture models with three mixture
componentsinstead of two. As aresult, the minimum value from spots
assigned to the mixture component with the second highest mean (one
above background mixture component) with >70 posterior probability
was used as a threshold. The median cell-type fraction and summed
deconvolved gene expression threshold values of the three-component
mixture models across all tissue sections was applied to all spots (as
for two-component models above).

Analysis of gene program usage across conditions. To assess the
differential use of gene programs between controland T, cell-depleted
conditions identified by factor analysis in scRNA-seq data, we used
the AddModuleScore function in Seurat to compute the relative
log-normalized expression of each factor’s genes relative to a ran-
dom set of background genes with similar average expression in the
tissue. Specifically, all genes were split into 24 expression bins and 100
control features were randomly selected for each feature in the input
gene program froma corresponding bin. The average log-normalized
expression of control features was then subtracted from the average
log-normalized expression of the features of interest to derive amod-
ule score. Module scores were computed across spots from all four
samples at the same time. A ¢-test was performed to compare gene
program module scores in control and T, cell-depleted conditions
for gene programs of interest, and P values were adjusted by Benja-
mini-Hochberg correction. To measure the difference in relevant
cellular contexts, comparisons were restricted to spots with cell-type
fractions above background for cell types in which the gene program
of interest was found to be differential by scRNA-seq, creating a table
comparing cell type by gene program of interest across conditions
(Fig. 4b). The visualization of specific module scores was performed
inFigs. 4c,d and 5g.

Definition of signaling niches. Certain gene programs thatincreased
their abundance in both our scRNA-seq and ST analysis following
T, cell depletion shared many genes across endothelial, fibroblast
and myeloid lineages. This included factors that contained many
IFN-stimulated genes (IFN factors) and factors that contained genes
related toIC and hypoxia signaling (IC factors). To determine shared
genes between IFN and IC factors, genes were assigned to each rel-
evant factor from the mouse scRNA-seq in the same way as detailed
in ‘Comparison of human and mouse factors’ and the intersection
of genes across all three lineages for IFN or IC factors was taken. The
IFN factors were defined as fibroblast factor 9, endothelial factor 19
and myeloid factor 17. IC factors were defined as fibroblast factor
22, endothelial factor 15 and myeloid factor 21. The module score
of shared genes for IFN (N =103 genes) or IC (N =18 genes)-related
gene programs (See Supplementary Table 12 for gene lists) was then
used to define ‘signaling niches’ or Visium spots where a common
signaling pathway may drive downstream gene expressionin several
colocalized cell types.

To assign spots to asignaling niche, we took advantage of the fact
that most spots acrossall tissue sections did not show signal for IFN or
ICgene programs. Therefore, we modeled the background rate of these
gene programs by fitting their module scores plus a pseudocount of
one to a gamma distribution using maximum likelihood estimation
(fitdistr from MASS package”) across all spots on the four biologically
independent sections being analyzed. Alignment with the gammadis-
tribution was checked by a histogram of the gene scores and density
overlay of the fit distribution. The module score corresponding to an
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upper tail probability of 0.01in the fit distributions was then used as
athreshold above which spots were assigned to that signaling niche.
Assignment of spots to the IFN or IC signaling niche was not mutually
exclusiveand gave 397 spots assigned to IC niches, 330 spots assigned
to IFN niches and 21 spots assigned to both. An illustration of spot
assignment to signaling niches is shown in Fig. 4e.

Cell-type enrichment in signaling niches. To assess the presence
of different cell types within signaling niches relative to background
cell-type fractions across the tissue (Fig. 4f), we took arandom sample
of 100 spotsacross all tissue sections and averaged the fraction of each
celltype, thenrepeated for10,000iterations to forman empirical prob-
ability distribution of mean cell-type fractions of randomly selected
spots. The empirical Pvalue was calculated as the fraction of iterations
in our empirical distribution with an average cell-type fraction above
the average for all spotsinagivensignaling niche (IFN or IC). Empirical
Pvalues were adjusted by Benjamini-Hochberg correction to account
for multiple hypothesis testing. To measure the magnitude of enrich-
ment for each cell type, the log, average cell-type fractions from the
total empirical distribution were subtracted from average cell-type
fraction values from either signaling niche.

Definition of tumor-state regions. To classify spots within tumor
lesionsintoareas of consistent transcriptional phenotypic state (‘tumor
lesion areas’), we first selected spots with tumor RNA above back-
ground (detailed above) and used cell-type fractions from the decon-
volution with the merged reference. To visualize the co-occurrence
of tumor states, we z-scored fractions of tumor states in tumor spots
and hierarchically clustered the spotsinto seven groups (R cutree with
k=7) using Pearson correlation distance and average agglomeration
(Extended Data Fig. 8a). This analysis revealed that tumor spots were
typically dominated by asingle tumor state. When plotted in their tissue
context, we found that they often aggregated spatially (Fig. 5a), pro-
viding further support for the presence of consistent transcriptional
phenotypes within lesional areas.

Each of the seven clusters was then labeled based on the tumor
state with the highest cell-type fraction in the cluster. The validity of
cluster labels was assessed by the expression of tumor-state marker
genes defined by previous studies?. We found clearly higher expres-
sion of marker genes in their corresponding cluster relative to other
tumor clusters (Extended Data Fig. 8b). The classification of tumor
spots in their tissue location is shown in Fig. 5b and Extended Data
Fig. 8c.InH&E staining, the location of different tumor states often cor-
responded to a noticeable change in histology, further supporting our
classifications. For instance, neighboring gastric and high-plasticity
regionsalso exhibited amore differentiated morphology in the gastric
tumor area and less structure in the high-plasticity area (Fig. 5f,g).
While our strategy increased the resolution of tumor transcriptional
states in our deconvolution, there may be additional tumor states
in situ that are not contained within our merged scRNA-seq refer-
ence due to heterogeneity of the model. In these cases, the cell-type
fractions from missing tumor states would be assigned to the closest
transcriptional neighbor.

Tumor lesion areas were defined by separating connected com-
ponents (contiguous spots in tissue) of the same tumor-state cluster.
ATl-like and AT2-like tumor-state clusters were merged for tumor lesion
areadefinition because of the higher degree of mixing between these
tumor states observed previously” and in our analysis (Extended Data
Fig. 8a). Only lesion areas greater than six spots were kept for subse-
quent analysis, to avoid micrometastases or regions dominated by
tumor edges dueto sectioning. Thisresultedin 47 and 38 tumor lesion
areas in control and T, cell-depleted tissue sections, respectively.
Tumor lesion areas were deemed to have animmune response in T,
cell-depleted tissue sections if >10% of constituent spots were part of
anICor IFN signaling niche (Fig. 5e).

Differential expression of tumor areas

Wewereinterested in detecting differential gene expression between
tumor lesion areas. We first collected all spotsin tumor lesion areas (1)
exhibiting an immune response and (2) exhibiting no response after
T, celldepletion (definedin the paragraph above), then performeda
Wilcoxon rank-sum test between the two groups of spots. SCTransform
log-normalized values were used as input and only genes detected
in at least 10% of spots in either condition and with an average log
fold-change value > 0.25between conditions were tested. We detected
259 genes that were differentially higher in responding tumors and
142 genes that were higher in non-responding tumors at Benjamini-
Hochberg-adjusted Pvalue < 0.01and log fold-change > 0.5 (Fig.5d and
Supplementary Table15). The SCTransform log-normalized expression
levels of specific genes associated with non-responsiveness to T, cell
depletion are showninFig. 5e.

Statistics
For allmouse experiments, statistical analyses were performed using
GraphPad Prism 9 and are detailed in the figure legends. Mice were allo-
cated randomly to experimental groups. No statistical methods were
used to predetermine sample sizes but our sample sizes are similar to
thosereported in previous publications™, Data collection and analysis
were not performed blind to the conditions of the experiments.
Statistical tests used for analysis of RNA-seq and ST data are
described. For scRNA-seqand ST, count data were assumed to be distrib-
uted according toanegative binomial distributionand log-transformed
data according to a normal distribution. In other analyses, data dis-
tribution was assumed to be normal but this was not formally tested.
scRNA-seq data analysis was performed using custom code rely-
ing primarily on Python v3.8.11 using Scanpy v1.8.1 package for basic
pre-processing and analysis. Visualization of the data was done using
MulticoreTSNE v0.1implementation of t-SNE in Python, and clustering
was done using PhenoGraph v1.5.7 package in Python. Factor analysis
was done using scHPF v0.5.0 implementation in Python v3.7.11. Dif-
ferential abundance testing between scRNA-seq conditions was per-
formed using Milo v1.3.4. Identification of factors (Hungarian matching
algorithm) wasimplemented using the linear_sum_assignment module
in optimize submodule of SciPy (v1.7.1) in Python (v3.8). For human
factor analysis, Spearman correlation coefficients and P values were
calculated in R using ggpubr (0.4.0) and results were visualized using
ggplot2v3.3.5.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw and processed bulk, scRNA-seq and Visium data from mouse
are available from the Gene Expression Omnibus under super series
accession GSE202159. Human tumor scRNA-seq data are available at
the Human Tumor Atlas Network (HTAN) data coordinating center web
platform (https://humantumoratlas.org/). Source data are provided
with this paper.

Code availability

No new algorithms were developed for this paper. All analy-
sis code is available at https://github.com/dpeerlab/Treg_
depletion_reproducibility/.
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Extended Data Fig. 1| Short-term Treg depletion in lung KP adenocarcinoma
bearing mice. (a, b, d) Representative gating of normal and tumor (EpCAM)
cells, (D) TCRB*CD4" (CD4), TCRB*CD8" (CD8) T cells, myeloid cells (MHCII*GRT
CD11b"), neutrophils (Neu) (MHCII'GR1*CD11b"), vascular endothelial cells
(VEC) (CD45CD31°GP38), fibroblasts (Fib) (CD45CD31'GP38"), and lymphatic
endothelial cells (LEC) (CD45°CD31'GP38") (A, B) in KP-lungs in diphtheria toxin
(DT, N=3)and PBS (Ctrl, N=4) mice and (D) in tumor-free lungs (DT, N=4), PBS
(Ctrl, N=4).(c, e) Cell frequencies in KP tumors from (A, B, D). Data represent
mean + SEM of one of two independent experiments. (c) Two-way ANOVA
alpha=0.05, Sidak’s multiple comparisons CD4 t =2.254, df =35ns P = 0.1953,
CD8t=1.235,df =35ns P = 0.8320, MHCII+/Gr1- CD11b+ (MAC/DC) t = 0.5098
df=35nsP=0.9987, MHCII-/Grl+ CD11b+ (Neu) t=2.985, df =35,*P =0.0355,
VEC, t=0.2030, df =35 ns P>0.9999, Fib t =0.09821, df =35 ns P>0.9999, Lec t =
0.08549, df =35 ns P>0.9999. (e) Two-way ANOVA, Alpha = 0.05, Tukey’s multiple

comparisons EC, t=1.056.df=12,ns P=0.5261 Tumor t=1.217,df=12,nsP =
0.4332. (f) Fold change (FC) deferentially expressed genes (DEG). (g) k-means
clustering of FC DEG between DT and Ctrl. Columns - log2 FC (DT/Ctrl) for cells,
eachrowisagene. Select genes are labeled. (h) Z-score-normalized counts for
selected genesin (G). (i) Cell frequencies in tumor-free DT and Ctrl lungs. Two-
way ANOVA, alpha=0.05, Siddk’s multiple comparisons. Epcam t = 0.3437, df =
37,ns P>0.9999, CD4 t=1.413,df=32ns 0.769, CD8 t =1.434, df =32 ns P=0.7550,
MHCII+/Gr1- CD11b+ (MAC/DC) t=0.8971, df =32, ns P=0.9771, MHCII-/Gr1+
CDl11b+ (Neu) t=3.664, df=32**P=0.0071, VEC t = 0.3854, df =32 ns P>0.9999,
Fibt=0.008845, df =32 ns P>0.9999, LEC t = 0.01251, df =32 ns P>0.9999. Data
represent mean + SEM of one of two independent experiments N=DT-3, PBS-3.
(j) DEG Numbers. (k) FC DEG in cells isolated from tumor-free lungs of DT vs Ctrl
mice. (F,J, K) DEG - differentially expressed genes (p<0.05). Red-upregulated,
blue-downregulated.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| scRNA-seq analysis and annotation of major TME cell
types inlung KP adenocarcinomas. (a) Sorting strategy. CD45" and CD45" cells
were sorted from lungs of PBS (Ctrl) and DT treated (48 hr) mice (3 mice per
group) harboring KP lung tumors. (b) t-SNE plots embedding (27,606 cells)
representing distribution of all the cells isolated in (A), colored by PhenoGraph
clusters (k=30) (left), or sample (right) (related to Fig. 2a, which shows major
celllineages). (c) Heatmap showing the average expression of cell type specific

markers in each cluster. The rows are genes and columns are clusters. Shown
expression is row normalized between O-1and genes are grouped to indicate
the subtype they typically are associated with. All the genes used for annotation
areshown. (d) t-SNE embedding (same as B) colored by lineages inferred using
the average expression of each cluster shown in the heatmapin (C). (e) t-SNE
embedding reflecting experimental conditions (Ctrl: PBS, gray; DT: diphtheria
toxin, red).
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Extended DataFig. 3| Heatmaps of Treg depletion-induced gene with (top). t-SNE embeddings (2815 cells) (bottom) representing distribution
expression changes in fibroblasts, endothelial and myeloid cellsin lung of endothelial cells color coded by their cluster identity inferred using the

KP adenocarcinomas. (a) Heatmap showing the average expression of known gene expression pattern for each cluster shown in the heatmap (left) and cell
endothelial markers in each endothelial cell cluster. Rows indicate cluster and type annotation derived from the heatmap above (right). All genes used for
columns indicate genes. The heatmap is column normalized between O-1and annotation are shown. (b) Same as (A) for fibroblasts. (¢) Same as (A) for myeloid
the genes are grouped to indicate the subtype they typically are associated cells.
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Extended Data Fig. 4 | Neighborhood analysis of Treg depletion-induced
gene expression changes in endothelial cells, fibroblast and myeloid cells
inlung KP adenocarcinomas. (a) t-SNE embedding of fibroblasts (3,791 cells)
(top) color coded by cell subtype (left) or experimental condition (right). A
density plot of the distribution of fibroblasts between conditions (bottom).
Ctrl - PBS, gray; DT - diphtheria toxin, red. (b) Graph of neighborhoods of
fibroblast cells computed using MiloR and embedded on t-SNE (top). Each dot
represents a cellular neighborhood and is color coded by the FDR corrected
p-value (alpha =1) quantifying the significance of enrichment of DT cells

compared to controlin each neighborhood. The size of the dot represents the
number of cells in the neighborhood. (bottom). Swarm plot depicting the log-
fold change in differential abundance of DT treated cells against control cellsin
each neighborhood across different fibroblast cell types. Each dot represents
aneighborhood and is color coded by the FDR corrected p-value (alpha=1)
quantifying the significance of enrichment of DT cells compared to controlin
each neighborhood. A neighborhood is classified as a cell type if it comprises at
least 80% of cells in the neighborhood, or called ‘mixed’ otherwise. (c) Same as
(A) for myeloid cells. (d) Same as (B) for myeloid cells.
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Extended Data Fig. 5| Factor analysis of Treg-dependent gene expression
by fibroblasts and myeloid cells in lung KP adenocarcinomas. (a) Heatmap
showing factor cell score across experimental conditions averaged over each
fibroblast cluster in each experimental condition. The rows are factors and
columns are clusters for each experimental condition. The clusters are grouped
based onthe cell type they are associated with. The heatmap is row normalized
from 0-1. (b) Heatmaps showing the top 200 genes that correlate the most with

imputed cell scores of the indicated factors (see Methods) for fibroblast subsets.
Each columnisa cell; cells are ordered based on their factor score in ascending
order from left to right indicated by the green bar. The experimental condition
for each cellis indicated by the grey for PBS (Ctrl) and red for diphtheria toxin-
treated conditions (DT) bar. Select examples of genes of interest are noted. (c)
Heatmap as in A for myeloid cells. (d) Heatmaps as in B for myeloid cells.
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Extended Data Fig. 6 | Treg-dependent gene expression changesin
endothelial and myeloid cells in bleomycin-induced lung inflammation vs
KP adenocarcinomas. (a) Schematic of the experimental design. (b) Numbers
of Treg and effector T cellsin Ctrl (PBS) and DT (Diphtheria Toxin) treated lungs,
at day 21 after bleomycin administration. (Left) Two-way ANOVA, Alpha=0.05,
followed by Tukey’s multiple comparisons test was performed. PBS Ctrlvs. PBS
BL,q=11.66 df =8**P=0.0002, PBS Ctrl vs. DT Ctrlq=0.9285,DF =8,nsP =
0.9103.PBS Ctrlvs. DT BL q=0.1986, df =8 ns P=0.9989. DT Ctrlvs. DTBLq =
0.7299 df =8, ns P=0.9529. Center Two-way ANOVA, Alpha=0.05, followed by
Sidak’s multiple comparisons test was performed. PBS Ctrlvs DT Ctrl t=0.3479
df=8nsP=0.9997, PBSBL vs DT BL t=1.575 df =8 ns P=0.633. (Right) Two-

way ANOVA, Alpha = 0.05, followed by Tukey’s multiple comparisons test was

performed. PBS Ctrl Vs DT Ctrlq=00.7223 df =8 nsP=0.9542PBSBLvs DTBL t
=0.1102 df =8 ns P=0.9998. Arepresentative of two independent experiments
with3 mice per group in each is shown. (c, d) t-SNE embedding of endothelial
cellsisolated from lungs of DT treated and Ctrl mice color coded by cell type
(left) or experimental condition (middle) and density plots of the distribution
of endothelial cells between conditions (right). (c) fibroblast, (D) myeloid cells.
(e) Heatmaps showing the top 200 genes that correlate the most with imputed
cellscores of the indicated factors for endothelial cells. Each columnis a cell;
cells are ordered based on their factor score in ascending order from left to right
indicated by the green bar. The treatment condition for each cell isindicated by
grey (Ctrl) and red (DT) bars. Select genes of interest are shown.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Robustness and validation of BayesPrism
deconvolution. (a) For each cell type, Spearman’s correlation of cell fraction
across all spots was calculated between deconvolution using all available reads
and1of20 separate deconvolutions using the available reads downsampled to
90%. Points represent the mean of the 20 Spearman’s correlation calculations
and error bars are the minimum and maximum correlation values. (b)
Comparison of cell fractions across separately deconvolved serial sections. For
all four biological samples, the average cell fraction for each cell type s plotted
inthe first serial section relative to the second. Trend line indicates a slope of 1.
Spearman’s correlation is shown. (c) Comparison of average log cell fractionsin

each of 8tissue sections using the standard scRNA-seq reference or the reference
with tumor RNA substituted for KP-Tracer tumor cells. Trend line indicates a
slope of 1. Spearman’s correlation is shown. (d, e). Examples of positive spots for
certain populations of interest are associated with histological features. Images
are from representative areas of control and Treg depleted tissue sections. Plots
with positive spots display the same example areas in the top of each panel
arrangement with the H&E stained image at lower resolution. (Br =bronchi; A/V
=artery/ vein; LV =lymphatic vessel). Analysis performed on (A-C) and images
arerepresentative of (D-E), one of two serial sections for each of four samples (DT
and Ctrl two biological replicates each). One experiment was performed.
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Extended Data Fig. 8 | Spatial transcriptomic analysis of tumor cell states
perturbed in response to Treg cell depletion. (a) Hierarchical clustering of
tumor spots by tumor state RNA fractions. (b) Log normalized expression of
tumor state marker genes in assigned spot clusters from A. (c¢) H&E staining of
3independent KP tumor sections (in addition to those shown in Fig. 5b) with
tumor spots denoted by their assigned cluster in A. (d) Number of tumor lesion
areas identified across all lung tumor states in control or Treg depleted mice
(85 tumor lesions total). (e) Number of tumor lesion areas identified in Treg
depleted sections across all tumor states colored by immune response status
in Treg depleted mice (N =38 tumor lesion areas). (f) Differentially expressed

genes (Wilcoxon test BH adjusted) between tumor cells between control and Treg
depleted conditions. (V=239 cells total). (g) GSEA of differentially expressed
genesin F within gene sets defined by different tumor clusters identified

in Marjanovic et al.”” which partially align with tumor states identified by
deconvolution. Dashed line indicates adjusted p-values <0.05. (NES = normalized
enrichment score; HPCS = high plasticity cell state). Analysis performed on (A-D,
B-G) and images are representative of (C), one of two serial sections for each of
four samples (DT and Ctrl two biological replicates each). One experiment was
performed.
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Extended Data Fig.10 | Association of Treg abundance with transcriptional
features of endothelial cells in human LuAd and loadings of human and
mouse fibroblast and endothelial cell factors. (a) Treg proportion of
hematopoietic cells (CD45") calculated from scRNA-seq data across all samples.
(b) Treg proportion of hematopoietic cells compared to the Treg proportion of
CD3" cells across all human samples. (c) Mean log, cell loading of CAR4" capillary
(factor 3) and other inflammation/hypoxia associated human endothelial factors
(4,5) plotted against log, Treg proportion in each patient sample. Spearman
correlation estimate (R) and p value are listed. Trend line represents a linear
model fit between the two and shading indicating the 95% confidence interval.
(d) t-SNE of human endothelial cells colored by factor 3, 4, or 5 cell loading

(max2.5) or sample ID. (N =19 patient samples). (e,g) Heatmap showingJaccard
similarity of genes associated with human and mouse fibroblast (E) or myeloid
(G) factors. (f,h,i) Mean log, cell loading of factors negatively associated with
Treg frequency in fibroblasts (F) and myeloid cells (H), or positively associated
inmyeloid cells (I) plotted against log, Treg proportion in each patient sample.
Spearman correlation estimate (R) and p value are listed. Trend line represents
alinear model fit between the two and shading indicating the 95% confidence
interval. (fibroblast N=20; myeloid N=23). (j) Heatmap showing the Spearman’s
correlation between Treg cell frequency associated human factors with
conserved trends in mouse Treg-depletion.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Flow cytometry data were collected on an LSRII using FACS Diva v8.0 (BD), or on Aurora using SpectroFlo v2.2.0.3 (Cytek)
Bulk RNA-seq libraries were sequenced on HiSeq (lllumina).
scRNA-seq libraries were sequenced on NovaSeq (lllimina).

Data analysis Flow cytometry data were analyzed using FlowJo v 10.6.1 (BD)
GraphPad Prism v9 was used for statistical analysis
All Images were processed and analyzed using ImageJ package v2.0.0-rc-69/1.52p
For bulk RNA sequencing STAR aligner v2.7.3a was used for alignment. R v3.6.0 was used for generating count matrices and DESeq2 was used
for Principal Component Analysis, to identify differentially expressed genes and for Spearman correlations calculations and for hierarchical
clustering and generation of K-means heatmaps.
scRNA-seq data analysis was performed using custom code relying primarily in Python v3.8.11 using Scanpy v1.8.1 package for basic pre-
processing and analysis. Visualization of the data was done using MulticoreTSNE v0.1 implementation of tSNE in Python and clustering was
done using PhenoGraph v1.5.7 package in Python. Factor analysis was done using scHPF v0.5.0 implementation in Python v3.7.11.
Differential abundance testing between scRNA-seq conditions was performed using Milo v1.3.4.
Identification of factors (Hungarian matching algorithm) was implemented using the linear_sum_assignment module in optimize submodule
of scipy package (v1.7.1) in Python (v3.8).
For human factor analysis, Spearman correlation coefficients and p values were calculated in R using ggpubr (0.4.0) and results were
visualized using ggplot2 v3.3.5.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Raw and processed bulk, single cell RNA-seq, and Visium data from mouse are available from Gene Expression Omnibus (GEO) at super series accession GSE202159.
Human tumor scRNA-seq data is available at the Human Tumor Atlas Network (HTAN) data coordinating center web platform (data.humantumoratlas.org).
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Life sciences study design
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Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications
5,13. Human sample size was based on the largest amount of patient samples available from the HTAN study collection that were primary
LUAD or local met.

Data exclusions  In human factor analysis only samples with sufficient cell numbers (Fibroblast > 5, Endothelial > 5, Myeloid > 20) in a given lineage were used
for association of factor usage to Treg proportion. Additionally, one sample with high IFN activation and another with low cell numbers and

inconsistent factor estimates within the endothelial lineage were removed from the same analysis.

Replication All experiments in the study were performed at least twice with consistent results except for single cell sequencing and spatial
transcriptomics, where no repetition is customary in the field 54, 72.

Randomization  Mice were sex and age matched. Mice were allocated randomly to experimental groups. Only continuous trends between cell proportion and
factor use were assessed across all patients and therefore controls based on sample groupings are not relevant.

Blinding Data collection and analysis were not performed blind to the conditions of the experiments. It is customary in the field that no blinding is
needed5,13.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Antibodies

Antibodies used For immunofourecence, the following antibody conjugates were used:
Ab supplier cat #
GFP-AFA488 ThermoFisher A12311
CD3-AF532 ThermoFisher 58-0032-82
CD4-AF647 BioLegend 100530
TCRB-PE ThermoFisher 12-5961-83
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GP38-PE-Cy7 BioLegend 127412

Lyve-1-APC R&D Systems FAB2125A

CD11c AF594 Biolegend 117346

F4/80-AF647 Tonbo Bioscience #20-4801-U100

For flow cytometry, the following antibody conjugates were used:
Ab supplier cat #

CD45-BV510 BioLegend 103137

CD45-BV570 BioLegend 103136
TCRB-PE-eFluor610 ThermoFisher 61-5961-82
CD3-PerCP-Cy5.5 Tonbo Bioscience 65-0031-U100
CD3-BV650 BiolLegend 100229

CD4-PerCP-Cy5.5 Tonbo Bioscience 65-0042-U100
CD4-ef450, ThermoFisher 48-0042-82

CD4-BV510 BiolLegend 100553

CD8a-BV605 BiolLegend 100744

CD8a-PE-e610 ThermoFisher 61-0081-82
CD8-BV711 BiolLegend 100759

CD31-PE BiolLegend 102508

EPCAM-AF647 BiolLegend 118212

GP38-PE-Cy7 BioLegend 127412

CD11b-BV605 BiolLegend 101257

CD11b-BV480 BD Biosciences 566117

CD11c-APC BD Biosciences 550261

CD11c-BV60S BiolLegend 117334

GR1-FITC, ThermoFisher 11-5931-82

GR1-AF532 ThermoFisher 58-5931-82
MHClII-redfluor710 Tonbo Bioscience 80-5321-U100
TER-119-FITC, ThermoFisher 11-5921-82
B220-BUV496 BD Biosciences 564662

F4/80-APC Tonbo Bioscience 20-4801-U100
CD44-ef450 ThermoFisher 48-0441-82
CD62L-BV605 BiolLegend 104438

KI67-AF700 BioLegend 652420

IFNg-ef450 Tonbo Bioscience 755-7311-U100
TNFa-BV605 BiolLegend 506329

NK1.1-APC-eF780 ThermoFisher 47-5941-82
CD64-APC BioLegend 139306

Ly6G-PE-Cy7 BioLegend 127618

CD19-PE-Cy5 BioLegend 115510

Ly6C-BV711 BioLegend 128037

Siglec-F-BV421 BD Biosciences 562681
CCR8-AF-647 BioLegend 150303

CCR8-PE R&D FAB8324P025
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For in- vivo experiments, the following antibodies where used
Ctrl 1gG BioXcell BEO130

anti CCR8 BioLegend 150302

anti VEGF R&D AF-493-M

Validation All above antibodies were well validated commercial clones or preps rutinely QC'ed by the manufacturer. Please refer to the spec
sheets on the respective vendors' website for technical information and detail by searching the catalog numbers provided.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Animals were housed at the Memorial Sloan Kettering Cancer Center (MSKCC) animal facility under specific pathogen free (SPF)
conditions according to institutional guidelines. Mice used in this study had no previous history of experimentation or exposure to
drugs. Adult male and female mice (6 weeks or older) were used for all experiments.
genetic strains used were Foxp3GFP-DTR and KrasLSL-G12D Trp53fl/fl. 10,13.

Wild animals No wild animals were used in this study.

Field-collected samples  No field collected samples were used in this study.

Ethics oversight All studies were performed under protocol 08-10-023 and approved by the MSKCC Institutional Animal Care and Use Committee

020¢ f1dy

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Metadata for patient tumor samples including race, gender, and other characteristics can be found in Supplementary Table
17.

Patients with lung adenocarcinoma undergoing a surgical resection or tissue biopsy at Memorial Sloan Kettering Cancer
Center (MSKCC) were identified and biospecimens collected prospectively from 2017 to 2020. All patients from whom
biospecimens were obtained provided informed consent for an MSKCC-wide binspecimen collection and analysis protocol.
Recruitment was designed to capture a wide, unbiased swath of heterogeneous disease, with a slight emphasis on EGFR-
mutated tumors with a high propensity to transform to more aggressive subtypes. Biases may be present related to this
recrultment design, the race, sex, smoking status and the general patient population of MSKCC.

Use of all patient material and data described in this manuscript was performed under ethical approval obtained from the
Memorial Sloan Kettering Cancer Center Institutional Review Board [Study numbers; 06-107 and 12-245).

MNote that full informaticn on the approval of the study protocol must also be provided in the manuscript

Flow Cytometry

Flots
Confirm that:

[ The axis labels state the marker and flucrochrome used (e.g. CD4-FITC).

[ The axis scales are dearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).

E] All plots are contour plots with outliers or pseudocolor plots.

(] A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

For isolation of immune and stromal cells, lungs were perfused, placed into 5 ml Eppendorf tubes containing 40031 of cold
serum-free APMI and chopped with scissors (1-2 mm). Lung fragments were placed in 2-3 ml of pre-warmed digestion
medium [RPMI 1640, 10mh HEPES buffer, 1% penicillin—streptomycin, 1% L-glutamine, liberase (Sigma-aldrich
#05401020001) and 1U/ml DNase | [Sigma-Aldrich #10104152001)) (2-3 ml} and incubated for 30 min at 37°C. After
digestion supernatant was collected and cells were resuspended in ice-cold RPMILEAD containing 5% FCS (ThermaoFisher
#35010¢V], 1mM HEPES [Corning #MT25060C1), 1% penicillin—streptomycin {Corning 8MT30002¢1) and 200mM L-glutamine
{Corning #MT25005L1). After additional digestion for 1 hr of the remaining tissue, both digested cell fractions passed through
a 100um strainer (Corning #07-201-432]), washed and FACS sorted, For cell isolation from transplanted. KP tumaor-bearing
mice, tumors were placed into 5 ml Eppendorf tubes contalning 400ul of cold serum-free RPMI1640, chopped with sclssars,
and incubated in digesticn medium containing 1 mg/ml collagenase (Sigma #11088793001) and 1U/ml DNase-l [Sigma-
Aldrich #10104159001) and beads on a shaker at 37°C for 1 hr, For cytokine production measurements, cells were incubated
at 37°C, 5% CO2 for 3hr in the presence of 50ng/ml phorbol-12-myristate-13-acetate (Sigma-Aldrich #PE139), S00ng ml
ionamycin (Sigma-Aldrich #10634), 1ug/ml brefeldin & (Sigma-Aldrich #B6542) and 2 uM monensin (Sigma-Aldrich #M5273).
Cells were stained with Ghost Dye Red 780 (Tonbko #13-0865) or Zombie MIR Flexible Viability Kit (Biolegend #423106) and a
mixture of fluorophore-conjugated antibodies for 30 min at 40C cells, washed and fixed with 1% PFA (Electron Microscopy
Sciences #15710). For intracellular staining, cells were fixed and permeabilized with the BD Cytofix/Cytoperm Kit or with the
Therma Fisher Transcription Factor Fix/Perm Kit according to manufacturers” instructions and analyzed on a BD LSR 11 flow
cytometer or sorted on a BD Aria || flow cytometer. Post-sort cell purity was routinely higher than 95%.

Samples were analysed on BD LSR I, Aurora (Cytek), or sorted ona BD Aria I

Flow cytometry data were collected on an LSR Il using Diva v8.0 (BD) or Aurora using SpectroFlo v2.2.0.3 (cytec) and anaklyzed
using Flowlo v 10.6.1 {BD)

Cells were sorted with <95% purity,
All cells were gated based on FSC-A and 55C-A to exclude debris. Then doublets were excluded by plotting FSC-H vs FSC-W,

followed by S5C-H vs S5C-W, Then dead cells were excluded based on live/dead dye negative. CD45 positive and negative
cells were gated next. All further gating strategies are Hlustrated in the supplementary material.

(<] Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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