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Neutrophils and emergency granulopoiesis 
drive immune suppression and an extreme 
response endotype during sepsis

Andrew J. Kwok1, Alice Allcock1, Ricardo C. Ferreira    1, Eddie Cano-Gamez1,2, 
Madeleine Smee1, Katie L. Burnham2, Yasemin-Xiomara Zurke    3,  
Emergency Medicine Research Oxford (EMROx)*, Stuart McKechnie4, 
Alexander J. Mentzer    1,4,5, Claudia Monaco    3, Irina A. Udalova    3, 
Charles J. Hinds6, John A. Todd    1,5, Emma E. Davenport2 & 
Julian C. Knight    1,4,5,7 

Sepsis arises from diverse and incompletely understood dysregulated 
host response processes following infection that leads to life-threatening 
organ dysfunction. Here we showed that neutrophils and emergency 
granulopoiesis drove a maladaptive response during sepsis. We 
generated a whole-blood single-cell multiomic atlas (272,993 cells, n = 39 
individuals) of the sepsis immune response that identified populations 
of immunosuppressive mature and immature neutrophils. In co-culture, 
CD66b+ sepsis neutrophils inhibited proliferation and activation of CD4+ 
T cells. Single-cell multiomic mapping of circulating hematopoietic 
stem and progenitor cells (HSPCs) (29,366 cells, n = 27) indicated altered 
granulopoiesis in patients with sepsis. These features were enriched in a 
patient subset with poor outcome and a specific sepsis response signature 
that displayed higher frequencies of IL1R2+ immature neutrophils, 
epigenetic and transcriptomic signatures of emergency granulopoiesis 
in HSPCs and STAT3-mediated gene regulation across different infectious 
etiologies and syndromes. Our findings offer potential therapeutic targets 
and opportunities for stratified medicine in severe infection.

The multiple dynamic host pathophysiological mechanisms that result 
in organ dysfunction following infection are incompletely understood 
and, while often aggregated into the clinical syndrome of sepsis, overlap 
with other critical illness syndromes1–3. There is an urgent need to better 
delineate such extreme responses to infection, given the COVID-19 pan-
demic and the wider, global burden of all-cause sepsis, which accounts 
for 11 million deaths per year and has a persistently high mortality of 

20–30%4. Axes of immune dysregulation in sepsis have typically been 
examined by peripheral blood bulk transcriptomic studies, which lack 
the resolution to identify cell type-specific signatures5–7 or single-cell 
interrogation of peripheral blood mononuclear cells (PBMCs)8, which 
omits neutrophils (Neu).

Data from animal models demonstrate key protective and path-
ogenic roles for Neu in sepsis, in some instances involving specific 
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Sepsis is highly heterogeneous2 and immune suppression associ-
ated with apoptosis, epigenetic reprogramming and downregulation 
of activating cell surface molecules in multiple cell types2 is a predomi-
nant feature in many patients. Sepsis subphenotypes are reported2,5–7,16, 
but their relationship with mechanisms of immune dysfunction is not 
well defined. Sepsis response signatures (SRSs) from whole-blood 
transcriptomics identify dynamic response states, with assignments 
in the SRS1 group or a high likelihood of SRS1 group (SRSq), associated 

subsets9,10. In humans, the clinical observation of a ‘left shift’ in com-
plete blood count to increased immature Neu in severe infection is well 
recognized11. Neu abundance varies between septic and non-infectious 
inflammation12, while single-cell transcriptomics indicates that they 
are important in the pathogenesis of severe COVID-19 (ref. 13) and 
acute respiratory distress syndrome (ARDS)14. Expansion of subsets 
of immunosuppressive granulocytes associate with a higher risk of 
nosocomial infection15.
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Fig. 1 | Whole-blood single-cell census in sepsis. a, Study design showing 
patients and analytical approaches applied. Discovery phase: scWB atlas for HCs 
(n = 6), sterile inflammation controls after CS (n = 7) and patients with sepsis 
(n = 26) by joint scRNA-seq and cell-surface protein profiling; scHSPC atlas for 
HCs (n = 7) and patients with sepsis (n = 15) (multiome scRNA-seq and scATAC-
seq). Validation phase: mmV in HCs (n = 11) and patients with sepsis (n = 36), 
including CyTOF and bulk RNA-seq of whole blood and timsTOF proteomics  
in plasma; WB-CID datasets (n = 1,595) with deconvolution using scWB.  
b, Uniform Manifold Approximation and Projection (UMAP) for scWB (HCs, n = 6; 

CS, n = 7; sepsis, n = 26) scRNA-seq (272,993 cells) annotated for differential cell 
populations. DC, dendritic cell; cDCs, classical DCs; pDCs, plasmacytoid DCs. 
c, UMAP for scWB scRNA-seq differential abundance in samples from patients 
with sepsis (n = 26) compared to HCs (n = 11), with sampled neighborhoods 
colored by statistical significance (spatial FDR < 0.05). Nhood, neighborhood. 
d,e, Beeswarm plots of differential cell abundance in scWB with cluster labels of 
neighborhoods depicted and compared for patients with sepsis (n = 26) versus 
HCs (n = 11) (d) and patients with sepsis (n = 26) versus after CS (n = 7) (e).

http://www.nature.com/natureimmunology


Nature Immunology | Volume 24 | May 2023 | 767–779 769

Article https://doi.org/10.1038/s41590-023-01490-5

with immunosuppression, differential response to steroid therapy, 
more severe disease and higher early mortality5,17–19. Here we identified 
differences in Neu function and subset abundance during sepsis, which 
were a consequence of altered granulopoiesis. We demonstrated these 
immunosuppressive granulocytic and granulopoietic disturbances 
were the functional basis of the SRS1 subphenotype of sepsis.

Results
Immature and cycling neutrophils are increased in sepsis
To generate an unbiased single-cell whole-blood (scWB) atlas of the 
sepsis response for all peripheral blood leukocyte populations, includ-
ing Neu, we assayed freshly sampled whole blood from 26 patients 
with all-cause sepsis with a change in quick sequential organ failure 
assessment (SOFA) score of ≥2 points, indicating organ dysfunction 
and a physiological measure of acute illness severity score (national 
early warning score 2; NEWS2) of ≥7, indicating patients who required 
an urgent critical care response (Supplementary Table 1 and Methods); 
9 sepsis convalescents (sampled 1–3 months after hospital discharge); 
6 age- and sex-matched healthy controls (HCs); and 7 patients after car-
diac surgery (CS) as a sterile inflammation control (Fig. 1a and Methods). 
We performed joint single-cell RNA and cell surface protein profiling of 
272,993 cells (Fig. 1b, Extended Data Fig. 1 and Supplementary Table 2). 
After clustering and annotation of major immune cell types (Extended 
Data Fig. 1a–c and Methods), we observed recognized hallmarks of 
peripheral blood sepsis immunophenotypes, including neutrophilia, 
lymphopenia and reduced HLA-DR expression in CD14+CD16− classical 
monocytes (cMo)20 (Extended Data Fig. 1d).

We performed fine-resolution clustering and annotation 
(Extended Data Fig. 1e–i and Supplementary Table 3). RNA velocity and 
partition-based graph abstraction showed annotated Neu subpopu-
lations followed the expected maturation sequence from immature 
MPO+ Neu to PADI4+ Neu to IL1R2+ Neu to S100A8/9+ Neu to mature 
CD10+CD16+ Neu (Extended Data Fig. 1j,k). We identified that degranu-
lating CEACAM8+ Neu, S100A8/9hi Neu, IL1R2+ Neu, PADI4+ Neu, MPO+ 
Neu and cycling MK167+CYP1B1+ Neu were all proportionally increased 
in sepsis compared to HCs, whereas all mononuclear cell subsets, 
except CD19+CD38+CD71+ plasmablasts, were reduced (Fig. 1c,d). The 
increase in degranulating CEACAM8+ Neu and S100A8/9hi Neu and the 
reduction in all mononuclear cell subsets, was also seen in CS compared 
to HCs (Extended Data Fig. 2a,b), suggesting they represented nonspe-
cific features of inflammation. By contrast, higher abundance of the 
immature IL1R2+ Neu, PADI4+ Neu and MPO+ Neu subsets and cycling 
MK167+CYP1B1+ Neu were specific to sepsis (Fig. 1c–e and Extended 
Data Fig. 2c,d). These findings demonstrated differential abundance 
of specific immature and cycling Neu subsets in sepsis.

Neutrophils in sepsis and recovery are immunosuppressive
To functionally test the immunosuppressive properties of sepsis Neu, 
we co-cultured bulk CD66b+ Neu (isolated from fresh whole blood 

of patients with sepsis by immunomagnetic selection) with alloge-
neic CD4+ T cells isolated from healthy donor leukocyte cones at a 
4:1 Neu:T cell ratio in medium supplemented with interleukin (IL)-2 
and CD3/CD28 Dynabeads. After 72–96 h of culture, the fraction of 
proliferating CD4+ T cells (calculated using non-bead-stimulated 
T cells cultured without Neu as the baseline proliferative fraction 
of cells in each sample) and the percentage of either PD-1+ or CD69+ 
CD4+ T cells (calculated relative to the CD3/28 bead-stimulated, no 
T cells control culture, to account for donor variation) was lower when 
co-cultured with CD66b+ Neu from patients with sepsis compared 
to HCs (Fig. 2a), indicating sepsis CD66b+ Neu inhibited CD4+ T cell 
proliferation and activation. There was no difference in the percent-
age of live, non-apoptotic CD4+ T cells on far-red DNA staining after 
72–96 h of co-culture with either HCs or sepsis CD66b+ Neu (Extended 
Data Fig. 2e). For samples on which both single-cell sequencing and 
functional co-culture assays were performed, we correlated MPO+ 
Neu, PADI4+ Neu, IL1R2+ Neu, S100A8/9+ Neu, degranulating CEACAM8+ 
Neu and mature CD10+CD16+ Neu frequency with the fraction of pro-
liferative CD4+ T cells, PD-1 expression and CD69 expression. None 
showed statistically significant correlation (Extended Data Fig. 2f), 
suggesting that all Neu subsets might be involved in the observed 
effect of CD66b+ Neu on CD4+ T cell proliferation and PD-1 and  
CD69 expression.

Depletion of arginine by increased arginase-1 activity and upreg-
ulation of T cell immune checkpoint PD-1–PD-L1/PD-L2 pathways 
can modulate the immunosuppressive properties of granulocytic 
myeloid-derived suppressor cells (G-MDSCs)12,15. Inhibition with argi-
nine and an Arg1 inhibitor, or antibodies to PD-L1/PD-L2 applied to 
the CD66b+ Neu-CD4+ T co-cultures, did not reverse the effects on 
proliferation, PD-1 and CD69 expression compared to co-cultures 
without inhibitors (Extended Data Fig. 2g). Addition of a prosta-
glandin EP2 receptor antagonist (TG6-10-1) increased CD69 expres-
sion compared to no inhibitor (Extended Data Fig. 2g), whereas 
the cyclo-oxygenase inhibitor indomethacin or a selective prosta-
glandin EP4 receptor competitive antagonist (GW-627368) did not 
(Extended Data Fig. 2g), suggesting effects at the level of pre-formed  
prostaglandin E2.

To understand how sepsis CD66b+ Neu mediated CD4+ T cell sup-
pression, we analyzed differential gene expression (DGE) of mature 
CD10+CD16+ Neu, S100A8/9hi Neu, degranulating CEACAM8+ Neu and 
IL1R2+ Neu in the scWB dataset (Fig. 2b). We tested for and observed 
statistically significant enrichment of prostaglandin regulation or 
synthesis pathways in all tested Neu subsets from patients with sepsis 
compared to HCs (Extended Data Fig. 2h). We investigated the suppres-
sive capacity by analyzing DGE indicative of experimentally validated 
G-MDSCs21–23 and found increased expression of this gene set (including 
SLC2A6, MMP8 and DUSP6) in both CD10+CD16+ Neu and IL1R2+ Neu and 
PADI4+ Neu and MPO+ Neu from patients with sepsis compared to HCs 
(Extended Data Fig. 2i).

Fig. 2 | Neutrophil function in sepsis and convalescence. a, Percentage of 
eFluor450 cell proliferation dye+ CD4+ T cells (top) and activated PD-1+ (middle) 
and CD69+ (bottom) CD4+ T cells in co-cultures of bulk CD66b+ Neu isolated by 
immunomagnetic selection from whole blood of patients with sepsis (n = 22) 
or HCs (n = 10) and allogeneic CD4+ T cells from healthy donor leukocyte cones 
cultured at a 4:1 Neu:CD4+ T cell ratio in medium supplemented with IL-2 and 
CD3 + CD28 Dynabeads for 72–96 h relative to healthy CD4+ T cells cultured 
with beads and without Neu. Non-bead-stimulated T cells cultured without 
Neu were used as the baseline proliferative fraction of cells in each sample as 
a readout of proliferation. CD3 + CD28 bead-stimulated, no co-culture T cells 
were used to account for donor variation for PD-1+ and CD69+CD4+ T cells. Box 
plots denote minimum and maximum with whiskers and bottom quartile, 
median and upper quartile with the box. b, Heat maps showing DGE for mature 
CD10+CD16+ Neu, S100A8/9hi Neu, degranulating CEACAM8+ Neu and IL1R2+ 
Neu comparing patients with sepsis (n = 22) versus HCs (n = 10). c, Correlation 

(Pearson r, FDR < 0.05, 95% confidence interval) of days after acute sepsis and the 
proportion of mature CD10+CD16+ Neu in convalescent samples (n = 9) collected 
at 1–6 months after hospital discharge. d, Consensus DGE analysis stacked bar 
plots of all Neu in convalescent samples compared to all Neu in HC samples. 
Downreg, downregulated; upgreg, upregulated. e, Frequency of PD-1+ (left) and 
CD69+ (right) CD4+ T cells at 72–96 h of co-culture with bulk CD66b+ Neu isolated 
by immunomagnetic positive selection from whole blood from convalescent 
patients (n = 9) and HCs (n = 10). Box plots denote minimum and maximum 
with whiskers and bottom quartile, median and upper quartile with the box. 
f, Assessment of phagocytosis by ingestion of pHrodo Green Escherichia coli 
bioparticles stained with 7-AAD, CD66b-AF700 and Siglec-8-APC in bulk CD66b+ 
Neu isolated from convalescent patients (n = 9) and HCs (n = 10) as in e. Box plots 
denote minimum and maximum with whiskers and bottom quartile, median and 
upper quartile with the box. Conv, convalescence. Functional assays were tested 
with two-sided Wilcoxon rank-sum tests. *P < 0.05, **P < 0.01, ***P < 0.001.
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To test whether the increased abundance of immature Neu 
populations in sepsis and their immunosuppressive features were 
linked to increased bone-marrow release of immature Neu, we ana-
lyzed samples at 1–6 months after hospital discharge (n = 9) (scWB 
cohort). Although no individual Neu subset was differentially abun-
dant between convalescent and HC samples (Extended Data Fig. 3a), 
we observed a strong correlation in convalescent samples between 
time from acute sampling and increasing proportion of CD10+CD16+ 

Neu (Fig. 2c), suggesting that recovery involved gradual resump-
tion of mature Neu production over 6 months. Consensus DGE of 
all Neu showed genes, including IL1B and type I interferon pathway 
(IFIT1, IFIT2, IFIT3, IFI6 and MX1) were downregulated in convales-
cence compared to HCs (Fig. 2d). Using the same cell isolation and 
co-culture system as for acute sepsis, we found convalescent CD66b+ 
Neu sampled at 1–6 months did not suppress CD4+ T cell proliferation 
(Extended Data Fig. 3b), but expression of CD69 and PD-1 on CD4+ 
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T cells were reduced and phagocytosis was increased in sepsis con-
valescence samples compared to HCs (Fig. 2e,f). These observations 
demonstrated immunosuppressive features of sepsis Neu on CD4+ 
T cells, acutely and in convalescence, which involved multiple Neu 
subsets with a potential role for prostaglandins.

Sepsis alters granulopoietic profile of circulating HSPCs
To further investigate granulopoiesis, we performed single-cell RNA-seq 
(scRNA-seq) and single-cell assay for transposase-accessible chromatin 
with sequencing (scATAC-seq) on sorted live, singlet, CD34+CD45+ 
hematopoietic stem and progenitor cells (HSPCs) from PBMCs isolated 
from 15 patients with sepsis and 7 HCs. We assigned HSPC identity by 
mapping scRNA-seq data to healthy donor reference bone-marrow 
mononuclear cell scRNA-seq datasets24,25, performed clustering after 
multidimensional reduction by combining scRNA-seq and scATAC-seq, 
with assignment using majority RNA mapping (Extended Data  
Fig. 3c–f). Multimodal clustering identified five clusters of progeni-
tor cells (Extended Data Fig. 3g). In patients with sepsis compared to 
HCs, cluster P4 (representing lymphocyte progenitors CDNTThi, FLT3hi, 
CD79hi and HOPXhi) was reduced (false discovery rate (FDR) = 0.002) 
(Extended Data Fig. 3h,i), whereas cluster P3 (defined by erythroid 
lineage progenitor genes HBBhi, HBDhi, KLF1hi and AC1hi) was increased 

(FDR = 0.0002) (Extended Data Fig. 3h,i), suggesting lymphoid deple-
tion and an erythro-myeloid bias in sepsis.

Multimodal clustering on 29,336 hematopoietic stem cells (HSCs) 
retained after excluding progenitor cells identified seven clusters  
(Fig. 3a). Comparing patients with sepsis to HCs, clusters C3, C4, C5 and 
C7 were enriched in sepsis, whereas C6 was enriched in HCs (Fig. 3b and 
Extended Data Fig. 3j). To understand whether any expanded clusters 
represented HSCs with a granulopoietic bias, we leveraged Human Cell 
Atlas (HCA) annotated HSCs and progenitor scRNA-seq bone-marrow 
data26 to define genes upregulated in granulopoietic cells, including 
MPO, RNASE2, ELANE and FKBP2 (Methods and Extended Data Fig. 3k). 
Clusters C5 and C7 had the highest expression of this gene set (Fig. 3c). 
Granulopoiesis is driven by transcriptional circuits mediated by CEBP 
transcription factors, where CEBPA is important during steady-state 
granulopoiesis (SSG) and CEBPB is a key regulator of emergency gran-
ulopoiesis (EG)27,28. CEBPA/CEBPB binding motifs were enriched in 
accessible chromatin sites in both C5 and C7 (Fig. 3d), consistent with 
upregulated SSG and EG. Comparison of gene expression profiles of 
C3, C4, C5 or C7 with C6 identified genes, including SETBP1 and FLT3, 
which are involved in expanded myelopoiesis29,30, as upregulated in C5 
and C7, respectively (Fig. 3e,f). These data provide evidence for altered 
granulopoiesis in sepsis that involved specific HSC clusters.
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Fig. 3 | Circulating HSC atlas confirms heightened granulopoiesis in sepsis. 
a, UMAP of scRNA-seq- and scATAC-seq-defined HSC clusters (29,336 cells) 
after exclusion of progenitor cells, with data arising from sorted live, singlet, 
CD34+CD45+ HSPCs from the PBMCs of patients with acute sepsis (n = 15), 
convalescent sepsis patients (n = 5) and HCs (n = 7). b, Differential abundance  
of HSCs between patients with sepsis and HCs as in a, with corresponding 
beeswarm plot (right) and UMAP visualization of sampled neighborhoods 
colored by statistically significant enrichment (spatial FDR < 0.05) (left).  

c, Granulopoiesis gene set scores per HSC cluster with differential cluster scoring 
tested with Kruskal–Wallis and post hoc Dunn’s tests. Violin plot with median, 
95% confidence interval and interquartile range. ****FDR < 0.0001 comparing C5 
or C7 versus other clusters. NS, not significant. d, chromVAR transcription factor 
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and C7 versus C6 (f) in sepsis samples (n = 15).
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Altered granulopoiesis drives a sepsis subphenotype
We next investigated whether the altered Neu-granulopoietic profile 
observed here was related to a previously identified SRS1 subphenotype 
in patients with sepsis5,17. Based on the expression of a seven-gene set 
(DYRK2, CCNB1IP1, TDRD9, ZAP70, ARL14EP, MDC1 and ADGRE3), the 
SRS1 subphenotype was assigned to 16 out of 26 patients in the scWB 
cohort (Extended Data Fig. 4a,b), in agreement with consensus or unsu-
pervised clustering of the pseudobulked scRNA-seq data (Extended 

Data Fig. 4c–e). IL1R2+ Neu and cycling MK167+CYP1B1+ Neu were 
increased in patient samples assigned as SRS1 compared to non-SRS1, 
whereas mononuclear cells, including CD14+CD16− cMo, CD56+ nat-
ural killer (NK) and LTB+IL7R+memory CD4+ T cells, were depleted  
(Fig. 4a,b). Large numbers of differentially expressed genes were 
detected in mature CD10+CD16+ Neu (EBI3, MYOSLID and SLC1A3), 
S100A8/9hi Neu (SLC1A3, KLF14 and SGPP2), degranulating CEACAM8+ 
Neu (SFXN1, HS3ST3B1 and PDE4D) and IL1R2+ Neu (NAIP, IDI1 and 
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CLEC4D) in samples assigned as SRS1 compared to non-SRS1 (Extended 
Data Fig. 5a), with a corresponding separation by SRS status on 
principal-component analysis (PCA) for these populations (Fig. 4c). 
By contrast, there were minimal differences in mononuclear cell sub-
sets between SRS1 and non-SRS1 (Extended Data Fig. 5b), consistent 
with SRS groupings being driven by Neu. Cell surface expression of 
IL-1R2, measured by flow cytometry, showed a moderate correla-
tion with expression of IL1R2 in CD66b+ Neu isolated from patient 
samples assigned SRS1 (Extended Data Fig. 5c). In co-cultures, SRS1 
CD66b+ Neu suppressed CD4+ T cell activation more than non-SRS1 
CD66b+ Neu (Fig. 4d), but not CD4+ T cell proliferation (Extended Data  
Fig. 5d). Moreover, SRS1 CD66b+ Neu displayed reduced phagocytosis 
compared to non-SRS1 (Fig. 4e), which was not restored by the addi-
tion of granulocyte–macrophage colony-stimulating factor (GM-CSF) 
(Extended Data Fig. 5e). These data indicated that SRS1 represented an 
immunosuppressed state driven, at least in part, by Neu dysfunction.

To investigate this further in a multimodal validation (mmV) 
cohort, we reanalyzed whole-blood bulk RNA-seq and mass cytom-
etry (CyTOF) immunophenotyping data31 in 42 samples from 36 
individuals with all-cause sepsis and 11 age- and sex-matched HCs 
(Supplementary Table 1). SRS assignment of the 36 patients reca-
pitulated higher early mortality in SRS1 compared to non-SRS1 
patients (Extended Data Fig. 6a,b). We identified eight Neu clusters 
in the CyTOF dataset (Extended Data Fig. 6c–f ). More immature 
CD64+CD10loCD16loCD15lo Neu and CD71hiCD38+Ki-67+ pro-Neu or 
CD71loKi-67+ pre-Neu were detected in patient samples assigned 
SRS1 compared to non-SRS1 (Extended Data Fig. 6g,h). Pseudotime 
trajectory analysis, which arranged cells in a progression of sequen-
tial maturation stages, demonstrated over-representation of SRS1 
samples earlier in the trajectory (Extended Data Fig. 6i–l). PCA of 
CyTOF data showed separation of Neu subsets, but not mononuclear 
cell compartments, between samples assigned as SRS1 compared to 
non-SRS1 (Extended Data Fig. 6m), indicating changes in Neu subsets 
drove the patient SRS grouping.

To further investigate drivers of the SRS subphenotype, we 
reduced mmV RNA-seq dimensionality to 33 gene modules using 
weighted gene coexpression network analysis (WGCNA) and identi-
fied 13 differentially expressed modules between SRS1 and non-SRS1 
assigned samples (FDR < 0.01) (Extended Data Fig. 7a). The SRS1 
upregulated modules were enriched for gene expression signatures of 
differentiating Neu32. Module 10 (bone-marrow Neu and stage 1 differ-
entiating Neu gene sets, including ALOX5, CYBB and LCN2) (Extended 
Data Fig. 7b) correlated with immature CD64+CD10loCD16loCD15lo Neu 
frequency (Extended Data Fig. 7c) and a gene expression signature 
defining IL1R2+ Neu (in the scWB cohort) including IL1R2, PFKFB2 and 
RETN genes (Extended Data Fig. 7d and Methods). To further validate 
enrichment of IL1R2+ Neu in SRS1, we performed cell type and cell 
state deconvolution on an independent total leukocyte microarray 
dataset5,17,18 consisting of 542 patients with all-cause sepsis, using 
the scWB single-cell multiomics dataset as a reference. We observed 
that IL1R2+ Neu and cycling MK167+CYP1B1+ Neu were increased in 
patient samples assigned as SRS1 compared to non-SRS1 (Extended 
Data Fig. 7e).

Next, we performed multiomics factor analysis (MOFA) to inte-
grate cell cluster (CyTOF), gene module (RNA-seq) and plasma prot-
eomic data (Extended Data Fig. 7f and Methods). Of all factors, 1 and 
2 were most divergent between patient samples assigned as SRS1 
compared to non-SRS1 (Extended Data Fig. 7g–k). The SRS1 direc-
tion in both factors was driven by immature Neu and progenitor Neu 
cell abundance (including CD71hiCD38+Ki-67+ pro-Neu, CD71loKi-67+ 
pre-Neu and CD64+CD10loCD16loCD15lo immature Neu), together with 
SRS1 upregulated gene modules and accounted for most variance in 
the cell and gene module datasets, but not proteomics (Extended Data 
Fig. 7i). Factor 5 was most strongly related to differences in plasma pro-
tein abundance, but showed no difference across SRS (Extended Data 

Fig. 7g–i), consistent with gene modules and cell clusters, rather than 
plasma proteins, being associated with SRS. Overall, the results show 
that differences in immature Neu populations, assayed using different 
modalities and Neu-granulopoietic dysfunction, were enriched in the 
SRS1 patient subphenotype.

STAT3 and granulopoiesis regulators define SRS1
Next we investigated the specific pathways and mediators that con-
tributed to observed differences in the SRS1-associated Neu subsets. 
Consensus non-negative matrix factorization of Neu subsets in the 
scWB cohort identified gene expression programs (GEPs) specific 
to Neu populations (Neu-GEP) that positively correlated with SRSq, 
namely CD10+CD16+ Neu_program_3 (enriched for IL-6 activation 
and the JAK–STAT3 signaling pathway (IL-6–JAK–STAT3), prostaglan-
din (PG) synthesis and regulation, hereafter ‘PG’) and CD10+CD16+ 
Neu_program_8 (tumor necrosis factor (TNF) signaling via nuclear 
factor (NF)-κB, hereafter ‘TNF’); S100A8/9hi Neu_program_8 (IL-6–JAK–
STAT3, PG); degranulating_CEACAM8+ Neu_program_9 (PG); PADI4 + 
Neu_program_7 (hypoxia); and IL1R2+ Neu_program_5 (metabolic 
regulator MTORC1 signaling, hypoxia) and IL1R2+ Neu_program_8 
(TNF) (Fig. 5a; Supplementary Tables 3 and 4). We predicted master 
regulators per GEP and found granulopoiesis transcription factors, 
including CEBPB and STAT3 (CD10+CD16+ Neu_program_3, S100A8/9hi 
Neu_program_8 and IL1R2+ Neu_program_8) and CEBPA (S100A8/9hi 
Neu_program_8) were highly enriched (Fig. 5b). STAT3 and SPI1 were 
highly enriched for the CD64+CD10loCD371lo Neu correlated module 
10 (mmV cohort) (Fig. 5c).

Given the role of STAT3 in EG and enrichment for STAT3 in 
SRSq-correlated Neu-GEP, we investigated whether cytokines known 
to induce granulopoiesis and signal through STAT3 differed in plasma 
abundance (mmV cohort). Granulocyte colony-stimulating factor 
(G-CSF) and IL-6 were elevated in patient samples assigned as SRS1 
compared to non-SRS1, whereas macrophage colony-stimulating fac-
tor (M-CSF) and GM-CSF showed no statistically significant difference 
(Fig. 5d). Consistent with G-CSF priming of Neu in cancer increasing 
NETosis33, we found that CD66b+ Neu from patient samples assigned 
as SRS1 underwent more NETosis than non-SRS1 samples on live-cell 
imaging for DNA-bound Cytotox Green reagent when stimulated 
with phorbol 12-myrisate 13-acetate (PMA) (Fig. 5e,f). These data 
demonstrated elevated STAT3-driven GEP in different SRS1-correlated 
Neu subsets and increased levels of circulating cytokines that sig-
nal through STAT3 and control granulopoiesis in SRS1 compared to 
non-SRS1 patients.

STAT3 processes in HSC cluster drive EG in SRS1
To test whether the SRS1 patient subphenotype represented a state of 
maladaptive granulopoiesis that involved heightened STAT3-mediated 
EG, we investigated whether there was any difference in circulating 
HSCs between SRS1 and non-SRS-1 subphenotypes, specifically the cell 
clusters differentially associated with granulopoiesis (C5 and C7), in 15 
patients with sepsis from the single-cell hematopoietic stem and pro-
genitor cell (scHSPC) atlas cohort. Cluster C5, but not C7, was enriched 
in patient samples assigned SRS1 compared to non-SRS1 (Fig. 6a,b and 
Extended Data Fig. 8a). We characterized the differentially accessible 
regions (DARs) of chromatin that defined the clusters and found 184 
and 718 DAR in C5 and C7, respectively compared to other clusters 
(FDR < 0.05, fold change (FC) > 1.5) (Extended Data Fig. 8b,c and Supple-
mentary Table 5). The chromatin profiles for C5 and C7 were enriched 
for publicly available myeloid progenitor cell chromatin profiles 
(C5, HSC multipotential progenitor; C7, megakaryocyte progenitor) 
(Extended Data Fig. 8d,e), suggesting their myelopoietic bias. CEBP 
motifs were identified within the DARs in both C5 and C7 (Extended 
Data Fig. 8f,g), whereas STAT motifs were enriched in C5, but not C7 
DARs (Extended Data Fig. 8f,g). To differentiate which transcription 
factors governed the identities of clusters C5 and C7, we overlapped 
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DARs with public chromatin immunoprecipitation (ChIP)-seq datasets 
to match transcription factor occupancy profiles. Enrichment of bind-
ing profiles for both CEBPA and CEBPB was detected in C7 (Extended 
Data Fig. 8h), whereas only CEBPB was enriched in C5, indicating that 
C5 was more biased toward EG while C5, but not C7, exhibited overlap 
with STAT3 binding profiles (Fig. 6c,d).

To identify transcription factors relevant to HSC clusters, we inte-
grated RNA and chromatin accessibility from the scHSPC data. We 
constructed supervised pseudotemporal trajectories from cluster C6 
(enriched in HCs) to C5 (enriched in SRS1) and C7 (enriched in sepsis, 
but not SRS1) (Fig. 6e and Extended Data Fig. 9a). STAT3 and CEBPB 
expression increased along the C6–C5 trajectory (Fig. 6e), but not the 

Mature Neu
S100A8/9hi Neu
Degranulating Neu
IL1R2+ immature Neu
PADI4+ immature Neu
MPO+ immature Neu/progenitors
Cycling Neu/progenitors
Mast cells/eosinophils
Platelets
HSPCs
Classical Mo
Non-classical Mo
cDCs
pDCs
Plasmablasts
B cells
NK cells
Cycling T/NK cells
Naive CD8+T cells
CD8+T cells
Naive CD4+T cells
Memory CD4+T cellsUMAP1

U
M

AP
2

ARDS

Scaled
expression

Scaled
expression

Scaled
expression

 S
10

0A
8/

9hi
 N

eu
 (P

8)
 g

en
es

no
rm

al
iz

ed
 e

xp
re

ss
io

n
M

at
ur

e 
C

D
10

+ C
D

16
+  N

eu
 (P

3)
 g

en
es

 n
or

m
al

iz
ed

 e
xp

re
ss

io
n

IL
1R

2+  N
eu

 (P
8)

 g
en

es
no

rm
al

iz
ed

 e
xp

re
ss

io
n

N
eu

tr
op

hi
l S

TA
T3

 p
ro

gr
am

s
(n

or
m

al
iz

ed
 e

xp
re

ss
io

n)

a

e
M

at
ur

e 
C

D
10

+ C
D

16
+ 
N

eu
pr

og
ra

m
  3

 g
en

es
S1

00
A8

/9
hi

 N
eu

 
pr

og
ra

m
  8

 g
en

es
IL

1R
2+ 

N
eu

pr
og

ra
m

  8
 g

en
es

d

0

10

20

0

10

20

30

CAP

0

2

4

6

c

COVID-19 Influenza

FP

Pediatric septic shock

b
Non-SRS1
SRS1

0

2

4

6

−2
−1
0
1
2

−4
−2
0
2
4

−4
−2
0
2
4

0

0.5

1.0

1.5

0

0.5

1.0

1.5

0

0.5

1.0

1.5

0

0.5

1.0

1.5

P < 2.2 × 10–16

0

10

20

30

P < 2.2 × 10–16

0
10
20
30
40

0

10

20

20

IL
1R

2+ 
N

eu
 (%

)

****

****

****

****

***

**** ****

**

**** ****

IL
1R

2+ 
N

eu
 (%

)

IL
1R

2+ 
N

eu
 (%

)

IL
1R

2+ 
N

eu
 (%

)

IL
1R

2+ 
N

eu
 (%

)

IL
1R

2+ 
N

eu
 (%

)

SRS1
Non-SRS1

SRS1
Non-SRS1

IL
1R

2+  N
eu

 (%
)

SRS1
Non-SRS1

P = 0.0016 P = 0.00052

P = 6.9 × 10–8 P = 7.7 × 10–5

Fig. 7 | SRS1 signatures are consistent across differing clinical contexts of 
infectious disease. a, Frequency of IL1R2+ Neu following whole-blood bulk 
transcriptomics (brWB-CID) deconvolution in patients with sepsis infected with 
SARS-CoV-2 (n = 77), influenza (n = 109), CAP (n = 438), FP (n = 229), ARDS (n = 77) 
and pediatric septic shock (n = 106). Box plots denote minimum and maximum 
with whiskers and bottom quartile, median and upper quartile with the box. Two-
sided Wilcoxon rank-sum test comparing SRS1 and non-SRS1 groups. b,c UMAP 
(b) and frequency of immature IL1R2+ Neu in samples assigned as SRS1 or non-
SRS1 in adult ARDS patients (n = 9) (c) after reference mapping of scRNA-seq data 
from whole blood to reference single-cell atlas derived from the scWB showing. 
Box plots denote minimum and maximum with whiskers and bottom quartile, 

median and upper quartile with the box. d, Heat maps of expression of STAT3 
GEPs (CD10+CD16+ Neu_program_3, S100A8/9hi Neu_program_8 and IL1R2+  
Neu_program_8) in the corresponding Neu subsets from patients with ARDS 
(n = 9) with violin plots on each side. Two-sided Wilcoxon rank-sum test 
comparing SRS1 and non-SRS1 groups. e, Violin plots of expression of a combined 
set of GEPs involving STAT3 (CD10+CD16+ Neu_program_3, S100A8/9hi Neu_
program_8 and IL1R2+ Neu_program_8) from scWB Neu subsets in pseudobulked 
Neu from patients with ARDS (n = 9) assigned as SRS1 or non-SRS1. Two-sided 
Wilcoxon rank-sum test comparing SRS1 and non-SRS1 groups. *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001.

http://www.nature.com/natureimmunology


Nature Immunology | Volume 24 | May 2023 | 767–779 777

Article https://doi.org/10.1038/s41590-023-01490-5

C6–C7 trajectory (Extended Data Fig. 9b). We then identified transcrip-
tion factor genes and chromatin transcription factor motifs that both 
changed along a trajectory and were correlated across modalities. 
While the C6–C5 trajectory involved CEBPB and STAT3 (Fig. 6f), the  
C6–C7 trajectory highlighted CEBPA (Extended Data Fig. 9c,d), 
indicating the role of C7 and C5 in SSG and EG, respectively and that 
STAT3-driven EG was increased in the SRS1 subphenotype.

To validate the importance of CEBPB–STAT3 and CEBPA in 
governing the identities of C5 and C7, respectively, transcription 
factor-mediated gene regulatory networks were constructed with 
CellOracle from RNA-seq and ATAC-seq HSC data for all HSC clus-
ters. In silico knockout of CEBPA led to C7 loss of identity and transi-
tion toward C6, whereas C5 cells were not affected (Extended Data 
Fig. 9e), while in silico CEBPB knockout disrupted C5 cell differen-
tiation (Extended Data Fig. 9e). In silico overexpression of CEBPA or 
CEBPB reversed the directions of cell fate transitions in C5 and C7, 
respectively (Extended Data Fig. 9e), suggesting that C7 was a SSG 
cluster and C5 was an EG cluster. In silico knockout or overexpres-
sion of STAT3 had similar effects as CEBPB (Fig. 6g), suggesting that 
STAT3 was driving EG. An independent methodology, using scRNA 
splicing information and vector field analysis of HSCs C5, C6 and C7, 
showed the same effects on EG and SSG reversal following in silico 
knockout of CEBPB, CEBPA and STAT3 (Extended Data Fig. 9f–j). These 
observations established C7 as a CEBPA SSG HSC cluster and C5 as a 
CEBPB–STAT3 EG cluster, with SRS1 enrichment of C5 highlighting EG  
in SRS1.

Dysregulated granulopoiesis associates with SRS  
across infections
We next investigated whether cellular (for example, IL1R2+ Neu expan-
sion) and molecular (for example, STAT3 GEP) properties of the SRS1 
patient subphenotype were seen across other severe infectious 
disease contexts. We reanalyzed publicly available bulk transcrip-
tomics whole-blood cross-infectious disease (brWB-CID) datasets 
for four contexts: infectious organism (SARS-CoV-2 (ref. 31), n = 77 
and influenza34, n = 109); source of infection (community acquired 
pneumonia (CAP), n = 438 and fecal peritonitis (FP), n = 229)17; clini-
cal syndrome (ARDS35, n = 77); and age group (pediatric sepsis36, 
n = 106). All samples were assigned to SRS1 or non-SRS1 based on 
the expression of the seven-gene set. Cell type and state deconvolu-
tion demonstrated expansion of IL1R2+ Neu (Fig. 7a) and, to a lesser 
degree, expansion of cycling MK167+CYP1B1+ Neu (Extended Data  
Fig. 10a) in patient samples assigned as SRS1 compared to non-SRS1 
for all contexts. DGE testing showed enrichment of a combined set 
of all GEPs from scWB Neu subsets involving STAT3 (CD10+CD16+ 
Neu_program_3, S100A8/9hi Neu_program_8 and IL1R2+ Neu_pro-
gram_8) (denoted ‘STAT3_combined_program’) in patient samples 
assigned as SRS1 compared to non-SRS1 across all contexts (Extended  
Data Fig. 10b).

We also analyzed published whole-blood transcriptomic data-
sets of patients with ARDS14 (n = 9) or COVID-19 (ref. 13) (n = 8) at a 
single-cell resolution (scWB-CID) using scWB as a reference for cell 
type and cell state annotation (Fig. 7b). IL1R2+ Neu were expanded in 
patients with SRS1 subphenotype compared to non-SRS1 (Fig. 7c and 
Extended Data Fig. 10c). The STAT3 GEP (CD10+CD16+ Neu_program_3, 
S100A8/9hi Neu_program_8 and IL1R2+ Neu_program_8) showed enrich-
ment in patient samples assigned as SRS1 compared to non-SRS1 in 
ARDS (Fig. 7d) and COVID-19 (Extended Data Fig. 10d). Total Neu, as 
defined by the original authors13,14, showed higher expression of the 
STAT3_combined_program genes in patient samples assigned as SRS1 
compared to non-SRS1 in ARDS (Fig. 7e) and COVID-19 (Extended Data 
Fig. 10e) providing cross-validation. These analyses indicated that 
the biological basis of the SRS patient subphenotype was independ-
ent of infectious organism, source of infection, clinical syndrome  
and age.

Discussion
Here, we showed that Neu-granulopoietic disturbances in sepsis 
involved expansion of specific populations of immature Neu, sup-
pression of CD4+ T cells in co-culture and altered granulopoiesis, and 
demonstrated these features were enriched in a subset of patients 
(SRS1). These results defined SRS1 as a specific immunocompromised 
disease endotype.

Our fresh whole-blood single-cell multiomic atlas, with no cellu-
lar enrichments or depletions, ensured faithful recapitulation of the 
sepsis cellular landscape. Previous single-cell -omic profiling focused 
on PBMCs, identifying an immature, bone-marrow-derived monocyte 
state (MS1), expanded in and predictive of sepsis8. The immature Neu 
populations defined here, in particular IL1R2+ Neu, exhibit similar gene 
expression profiles to MS1 cells8. Direct comparison between MS1 and 
IL1R2+ Neu could potentially reveal similar myelopoietic processes 
leading to their generation. The extent to which mobilization of IL1R2+ 
Neu may occur elsewhere in systemic inflammation, such as reported 
in mice37 and whether IL1R2+ Neu and other Neu subsets may drive 
immune suppression in these contexts, remains unclear.

While altered myelopoiesis in sepsis has been described in 
mice38,39 and modeled in vitro40 here we presented evidence for 
amplified granulopoiesis in humans during sepsis and specifically, 
a dysregulated form of EG in the SRS1 endotype. Our data, together 
with the reported increased risk of infections in patients with clonal 
hematopoiesis, including sepsis41, triangulate on the bone marrow 
as foundational for the maladaptive response to infection, with the 
caveat that our samples derive from circulating HSPCs rather than 
bone-marrow tissue.

Going forward, it will be important to understand determinants 
of differential bone-marrow responses to infection and the mye-
lopoietic legacy of severe infection, for example, through trained 
immunity42 or hematopoietic exhaustion43. Published reports sug-
gest that previous exposures and inflammatory comorbidity may 
be important in influencing subsequent myelopoietic responses 
to infection44. Meanwhile, our observations of persistent granulo-
cytic alterations in convalescence, both phenotypic and functional, 
add to the evidence that infectious and inflammatory stimuli have 
long-lasting myelopoietic and therefore innate immune ramifica-
tions42,45. CEBPB has a key role in induction of trained immunity in 
HSCs46 and STAT3 drives specific immunosuppressive properties in 
MDSCs21. We found that STAT3-CEBPB-driven EG was pathognomonic 
of SRS1, with STAT3 underpinning the granulopoietic–granulocytic 
axis, raising the hypothesis that SRS1 represents a state of maladap-
tive innate immune reprogramming and memory, with a potential 
opportunity for manipulating STAT3 activation to alleviate sepsis- 
and SRS1-associated immunosuppression. For example, G-CSF and 
IL-6 show increased expression in SRS1, canonically signal through 
STAT3 and are key contributors to EG47,48 with inhibition specifically 
in patients with SRS1 or high SRSq subphenotypes a possible immu-
notherapeutic strategy1. This is further supported by Mendelian rand-
omization work, where lower IL-6R expression associated with reduced 
mortality in sepsis49 and the therapeutic benefit of targeting IL-6 in 
severe COVID-19 (ref. 50).

Limitations of our study include the extent that our single-cell- 
analysis patient cohorts are fully representative of the breadth of the 
sepsis syndrome. Further work is needed to understand the differential 
immunosuppressive properties and role of prostaglandins in Neu, 
altered granulopoiesis through study of patient bone marrow and 
experimental gene manipulation of transcription factors to verify in 
silico knockouts. Relevant animal model and experimental medicine 
studies to manipulate candidate therapeutic targets are needed to 
better understand cytokine inhibition strategies.

Collectively, our work identified a common innate immune and 
hematopoietic axis that contributes to the maladaptive immune 
response to infection during sepsis and specifically a poor outcome, 
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immunocompromised, extreme response SRS1 patient endotype, 
advancing opportunities for personalized medicine.
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Methods
Study ethics, patient cohorts and sample sets
scWB atlas. Volunteers self-reporting as healthy (HCs) and with no 
history of infection in the past 14 d were recruited into the Genetic diver-
sity and gene expression in white blood cells study following informed 
consent and under ethical approval (South Central Oxford REC B, ref-
erence 06/Q1605/55). Samples from patients with acute sepsis were 
collected from patients ≥18 years of age who were admitted to Oxford 
University Hospitals NHS Foundation Trust, UK. Patients were recruited 
from the intensive care unit (ICU) if they had symptoms and signs of 
established sepsis (suspected infection with an acute change in total 
SOFA score ≥2 points)3 or from the emergency department and medical 
wards if they had a change in quick SOFA score by ≥2 points and a NEWS2  
(ref. 51) score ≥7 or intensive care review requested. Exclusion crite-
ria were as previously reported in the UK Genomic Advances in Sep-
sis (GAinS) study (NCT00121196)5: patients or consultees unwilling or 
unable to give consent; advanced directive to withhold or withdraw 
life-sustaining treatment; admission for palliative care only; pregnancy 
and 6 weeks post-partum; or severe acquired immunodeficiency includ-
ing systemic high-dose steroid therapy (prednisolone 0.5 mg kg−1 d−1 for 
14 d or equivalent), HIV infection, known regular therapy with immuno-
suppressive agents such as azathioprine or neutrophil counts <1,000 ml−1 
due to any cause, including metastatic disease and hematological 
malignancies or chemotherapy, but excluding severe sepsis and solid 
organ/bone-marrow transplant recipient receiving immunosuppressive 
therapy. Convalescent sepsis samples were collected 1–6 months after 
hospital discharge from individuals with acute sepsis samples already 
taken. Post-CS samples were collected from patients older than 18 years 
of age who were admitted to Oxford University Hospitals NHS Founda-
tion Trust, UK. Patients were eligible if they were (1) undergoing cardiac 
bypass surgery, (2) required postoperative ICU stay and (3) did not have 
an infection before surgery. Exclusion criteria were identical to those for 
patients with sepsis. Patients with sepsis and CS were recruited into the 
Sepsis Immunomics Study following informed consent and under ethical 
approval (South Central Oxford REC C, reference:19/SC/0296) between 
May and November 2021. Sepsis samples were collected on days 1, 3 or 5 
of hospital or ICU admission, whereas CS samples were collected 1 d after 
surgery. Written informed consent was obtained from adults or from 
personal/nominated consultees for patients lacking capacity, with retro-
spective consent obtained from the patient once capacity was regained.

scHSPC atlas. This included samples from 15 patients with sepsis 
and 7 age and sex-matched HCs recruited under the same studies as in 
scWB and mmV (see below), with one and eight acute sepsis samples 
overlapping with scWB and mmV, respectively and six acute sepsis sam-
ples not analyzed in either cohort. Eight convalescent sepsis samples 
were included. Of the HCs, five were the same HCs as in mmV. HCs and 
patients with sepsis were recruited into the same studies as described 
under whole-blood single-cell atlas31.

Bulk RNA-seq and single-cell RNA-seq WB cross-infectious disease 
datasets (brWB-CID/scWB-CID). Publicly available data of infectious 
disease cohorts recruited with different clinical approaches were reana-
lyzed. Bulk transcriptomic data were obtained for adult sepsis based on 
microarray5,18 and bulk RNA-seq17, COVID-19 (ref. 31) (https://zenodo.
org/record/6120249#.YrLY_OzML0o), influenza34 (GSE111368), CAP 
and FP (EGAD00001008730), ARDS35 (GSE65682) and pediatric septic 
shock36 (GSE13904). Single-cell transcriptomic data were reanalyzed 
for ARDS52 and COVID-19 (ref. 13).

Fresh whole-blood sample processing for single-cell sequencing
Blood samples were drawn into EDTA tubes (BD Biosciences) and pro-
cessed within 1 h of collection. Then, 1 ml whole blood was lysed with 
9 ml 1× eBioscience red blood cell lysis buffer (Thermo Fisher) twice 
and 200,000 cells were transferred for antibody staining.

Whole-blood single-cell RNA and cell surface protein profiling
scRNA and cell surface protein sequencing was performed with the 
BD Rhapsody platform (633731/633733, whole transcriptome assay 
(633801)) using 30 AbSeq antibodies (1 μl per antibody) (Supplemen-
tary Table 2). Cells were stained following the manufacturer’s rec-
ommendations before single-cell capture targeting 6,000 cells per 
sample. Reverse transcription, complementary DNA amplification and 
library construction (633801) were performed following the manufac-
turer’s recommendations in six batches. Libraries were sequenced on 
a NovaSeq6000 (Illumina).

Whole-blood single-cell multiomic analysis
Analysis was performed with v.4.0.0 R and Python 3.8.6.

Preprocessing and quality control. Gene expression data were aligned 
using STARsolo53 (v.2.7.9a) (GRCh38) and spliced and unspliced counts 
were produced. Unfiltered files were used for cell calling (emptyDrops 
function, DropletUtils (v.1.10.3)54) with a unique molecular identifier 
(UMI) threshold of 100 and FDR of 0.5%. AbSeq reads were trimmed 
with Trimmomatic (v.0.39) to the 12 bp UMI+ 36 bp AbSeq nucleotide 
sequence and aligned to an artificial reference of the AbSeq nucleotide 
sequences using STARsolo.

Cells expressing <100 or >4,000 genes, >10% mitochondrial reads, 
>2% hemoglobin reads or a log10(UMI per gene) <0.6 were removed. 
Genes expressed in <10 cells or with a total count <3 were removed. 
Scrublet (v.0.2.3) and doublet detect (v.3.0) were both used on default 
settings to remove doublets with automatic thresholds.

Normalization, dimensionality reduction and clustering. Data were 
log normalized and 4,000 highly variable genes (HVGs) were identified 
using the Seurat vst algorithm (scanpy v.1.7.2).

Multimodal dimensionality reduction was performed with TotalVI 
(scvi-tools v.0.10.0)55 on default settings with all 30 proteins and HVGs 
with each individual sample set as a batch (as all samples were pro-
cessed separately).

Unsupervised clustering was performed on the 20 TotalVI latent 
dimensions (Seurat FindNeighbors (k = 30) and FindClusters (smart 
local moving algorithm)). Clustering resolution was evaluated by 
cluster neighborhood purity, cluster average silhouette width and a 
30-iteration bootstrap to determine cluster stability with respect to 
sampling noise (bluster v.1.0). Additionally, we inspected top markers 
per cluster to match with known biology and understand potential 
value in merging versus splitting clusters. Combining these elements, 
the default clustering resolution 0.8 was chosen, with one immature 
neutrophil cluster split into two (MPO+ immature neutrophils/pro-
genitors and PADI4+ immature neutrophils) based on resolution 1.1.

Cell annotation and RNA velocity/trajectory analysis. Cell clusters 
were merged for protein marker-based annotation of major known 
immune cell types at a broad level and kept at the clustering resolu-
tion of choice for fine annotation. Lineage assignment was confirmed 
with SingleR (v.1.6.1) assignments. Fine annotation was conducted by 
inspecting biologically meaningful gene markers for T cell and neutro-
phil populations (Supplementary Table 3).

RNA velocity and partition-based graph abstraction analysis of the 
neutrophils (without degranulating or apoptosing neutrophils) was 
performed with scVelo (v.0.2.3, default settings of stochastic model)56. 
Moments were estimated using TotalVI reduced dimensions.

scRNA-seq pseudobulk unsupervised analysis (consensus clus-
tering, PCA, hierarchical clustering) and SRS assignment/scor-
ing. Gene expression was aggregated per individual for all cells and 
normalized (EdgeR trimmed mean of M-values; TMM). The top 10% 
most variable genes by mean absolute deviation were taken for unsu-
pervised analysis.

http://www.nature.com/natureimmunology
https://clinicaltrials.gov/ct2/show/NCT00121196
https://zenodo.org/record/6120249#.YrLY_OzML0o
https://zenodo.org/record/6120249#.YrLY_OzML0o
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111368
https://ega-archive.org/datasets/EGAD00001008730
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65682
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13904


Nature Immunology

Article https://doi.org/10.1038/s41590-023-01490-5

Consensus clustering was performed with the ConsensusClus-
terPlus package (v.1.54.0) (ConsensusClusterPlus function, 1,000 
repetitions, pItem = 0.95, pFeature = 0.1, inner/finallinkage = ward.D2 
and distance = euclidean). Unsupervised hierarchical clustering was 
performed with Ward’s linkage and Euclidean distance.

The relevant genes (DYRK2, CCNB1IP1, TDRD9, ZAP70, ARL14EP, 
MDC1 and ADGRE3) were used for sepsis sample SRS assignment and 
SRSq score calculation by SepstratifieR (v.0.0.0.9)57.

Differential abundance analysis. Cell type/state DA across conditions 
was identified by sampling neighborhoods of cells from a k-nearest 
neighbors (k-NN) graph and looking for enrichment of either con-
dition in each neighborhood as implemented in MiloR58. The 20 
batch-corrected latent dimensions from TotalVI were used for MiloR 
(v.0.99.19) k-NN graph construction (k = 30) and neighborhood index-
ing (proportion = 0.1). DA testing was performed with generalized 
linear models, including age and sex as covariates (neighborhoods 
significant if spatial corrected FDR < 0.05).

DGE analysis. For pseudobulk DGE, gene expression was aggregated 
per individual and per cell type/state into pseudobulks. Genes were 
filtered per pseudobulk based on minimum expression of n counts 
in at least X samples, where X was the smallest comparator group and 
n was defined for each pseudobulk based on histograms of logged 
count distributions. Pseudobulks were normalized by the EdgeR TMM 
method (v.3.30.3)59. DGE was performed with generalized linear models 
as implemented in EdgeR with age, sex and sequencing batch included 
in the model.

Consensus DGE for acute sepsis versus HC IL1R2+ immature neu-
trophils (as cells were too sparse to run pseudobulk DGE) and conva-
lescent versus HC total neutrophils was performed as described in  
ref. 60. Genes were filtered for those that showed reproducible change 
in the same direction in a minimum of six samples (smallest comparator 
group size, HC = 6 samples).

Consensus non-negative matrix factorization of neutrophil gene 
expression. The 1,000 HVGs for each neutrophil state were selected 
(Seurat SelectIntegrationFeatures) followed by cNMF (v.1.2) as previ-
ously described (100 factorizations)61 for 4–15 GEPs. The final GEP 
number per neutrophil state was chosen based on a tradeoff between 
stability versus error as recommended by the original authors. Mean 
GEP usage per sample for each neutrophil state was correlated with 
sample SRSq scores with FDR adjustment. The top 50 genes per GEP 
were taken for downstream analysis.

Transcription factor prediction analysis. GEPs positively correlated 
with SRSq were used for TF prediction analysis with the Cytoscape 
(v.3.9.1) plugin iRegulon (v.1.3)62 (default settings). The same analysis 
was performed for the top 1% genes correlating with module 10 eigen-
gene from mmV cohort RNA-seq WGCNA (below).

IL1R2+ neutrophil defining gene set. Genes specific to IL1R2+ neu-
trophils were identified with Wilcoxon tests (Seurat FindMarkers) for 
sepsis IL1R2+ neutrophils, filtering to only retain genes with adjusted 
P value <0.01 and average log2FC > 1.

Gene set and pathway enrichments. Gene sets for G-MDSCs22,23 were 
scored in the scWB neutrophils (Seurat AddModuleScore). Pathway 
analysis was performed against MSigDB Hallmark pathways and 
prostaglandin-related pathways from the MsigDB C2 curated gene 
sets in ClusterProfiler (v.4.1.4)63.

Neutrophil functional assays
Isolation of neutrophils from whole blood. Neutrophils were isolated 
from 5–10 ml whole blood from EDTA Vacutainer tubes (BD Biosciences) 

using EasySep HLA Chimerism Whole Blood CD66b positive selection 
kit (StemCell) following the manufacturer’s instructions.

Phagocytosis assay. Neutrophils were incubated for 20 min in com-
plete medium with or without (fluorescence minus one) pHrodo Green 
E. Coli bioparticles (Invitrogen) (1 neutrophil:10 bioparticles). Cells 
were washed and stained for surface markers for 30 min with 7-AAD, 
CD66b-AF700 (G10F5) and Siglec-8-APC (7C9) antibodies from BioLeg-
end and acquired with a BD LSRFortessa X-20 analyzer. The phagocytosis 
median fluorescence intensity for single 7-AAD−CD66b+Siglec-8− cells 
was determined by subtracting the median fluorescence intensity of 
the fluorescence minus one control sample.

Neutrophil-allogeneic CD4+ T cell co-culture. Cryopreserved CD4+ 
T cells from healthy donor leukocyte cones were thawed and stained 
with 10 μM eBioscience Cell Proliferation Dye eFluor450 (Invitro-
gen) following the manufacturer’s recommendations. T cells were 
co-cultured with CD66b+ neutrophils in 96-well U-bottom plates 
(200,000 cells per well) at 37 °C 5% CO2 at a 4:1 neutrophil to T cell ratio 
in complete medium supplemented with 50 IU ml−1 recombinant human 
IL-2 (BioLegend) and anti-CD3/CD28 Dynabeads (Gibco) added at a 1:1 
bead:T cell ratio. As controls, T cells were plated without neutrophils in 
every run, with and without anti-CD3/CD28 beads. To reverse T cell inhi-
bition, we tested co-cultures with 1 mM l-arginine (Sigma-Aldrich), 1 μM 
arginase-1 inhibitor CB-1158 (Fisher Scientific), 10 ng ml−1 anti-CD274 
(eBioscience clone MIH1), 10 ng ml−1 anti-CD273 (PD-L2) (eBioscience 
clone MIH18), 20 μg ml−1 PGE2 (Sigma-Aldrich), 10 μM indomethacin 
(Sigma-Aldrich), 15 μM EP2 inhibitor TG6-10-1 (MedChemExpress) or 
15 μM EP4 inhibitor GW-627368 (MedChemExpress).

After 72–96 h of co-culture, cells were stained for surface mark-
ers followed by annexin V and 7-AAD to exclude dead/apoptosing 
cells. Samples were analyzed using the BD LSRFortessa X-20. All anti-
bodies were purchased from BioLegend unless otherwise stated: 
CD3-APC (UCHT1), CD4-BUV395 (BD Biosciences, SK3), CD66b-AF700 
(G10F5), PD-1-PE (NAT105), CD69-PECy7 (FN50), 7-AAD, annexin V− 
FITC. T cells were gated as singlet CD66b−CD4+CD3+annexin V−7-AAD− 
cells. Proliferation analysis by dye dilution was established using the 
non-bead-stimulated T cells cultured without neutrophils as the base-
line proliferative fraction of cells in each sample. The proliferative 
fraction and percentage of cells expressing PD-1 and CD69 were calcu-
lated as a percentage relative to the anti-CD3/28 bead-stimulated, no 
co-culture T cells control to account for donor variation.

Flow cytometry data analysis. Flow cytometry data were analyzed 
using FlowJo (v.10), GraphPad Prism (v.9) and R (v.4.0.0). The flow 
cytometry gating strategy for neutrophil functional assays is described 
in Supplementary Note 1.

NETosis assay. Neutrophils were plated at 20,000 cells per well (100 μl 
per well) in Ham’s F-12K medium (Gibco) using 96-well flat-bottom 
plates coated with 0.01% poly-l-ornithine solution (Sigma). Then, 
250 nM IncuCyte Cytotox Green Dye was added to measure NETosis. 
Cells were treated with 100 nM PMA as per the manufacturer’s recom-
mendations then imaged with the IncuCyte Live-Cell Analysis System 
for up to 4 h.

PBMC isolation and cryopreservation
PBMCs were isolated from sepsis (acute and convalescent) and HC 
whole blood using density gradient centrifugation with Leucosep 
tubes (Greiner) and lymphoprep (StemCell) and cryopreserved in 10% 
dimethylsulfoxide (Cell Signaling Technology).

CD34+ hematopoietic stem and progenitor cell enrichment
PBMCs from 15 patients with acute sepsis, 7 age and sex-matched HCs 
and 8 convalescent sepsis samples were used for CD34+ HSPC isolation. 
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Three convalescent sepsis samples were removed after preprocessing 
and demultiplexing (below) (samples were judged as too long since the 
acute episode (>6 months past hospital discharge) by retrospective 
clinical evaluation). The 30 samples were processed in six batches, with 
each batch containing at least one sample from each comparator group.

Cryopreserved PBMCs were thawed and resuscitated (first wash 
with 25 U ml−1 benzonase (88700, Thermo Fisher)). Magnetic acti-
vated cell sorting for CD34+ enrichment (130-100-453, Miltenyi Biotec) 
was performed twice, according to the manufacturer’s instructions. 
Cells were stained at 4 °C with CD34-PE (clone AC136, Miltenyi Biotec) 
and CD45-FITC (clone HI30, BioLegend) and DRAQ7 (live/dead) dye 
(424001, BioLegend) and FACS-sorted for live, singlet, CD34+CD45+ 
HSPCs.

HSPC single-cell multiomics
scRNA and scATAC-seq on CD34+ HSPCs was performed by isolating 
nuclei of flow-sorted HSPCs. An equal number of cells per sample was 
pooled for each batch. Cell lysis and nuclei extraction were conducted 
following the low input workflow within the 10x Genomics Demon-
strated Protocol (CG000365 Rev B). Nuclei were transposed, captured 
and RNA and ATAC library preparation (1000285, 10x Genomics) was 
performed as per the 10x Genomics manufacturer’s protocol. RNA 
libraries were sequenced on a NovaSeq6000 (Illumina) and ATAC 
libraries were sequenced on a NextSeq500 (Illumina).

HSPC single-cell multiomic analysis
Analysis was performed with v.4.1.0 R using ArchR (v.1.0.2) unless 
otherwise specified64.

Preprocessing, demultiplexing and doublet removal. Raw FASTQ 
files of scRNA-seq and scATAC-seq were aligned to the GRCh38 refer-
ence genome using 10x CellRanger ARC (v.2). Genetic demultiplexing 
and doublet removal was performed for each batch as previously 
described31. HSPC multiomic data were input into ArchR (v.1.0.2) with 
mintss = 4 and minFrags = 1,000. Homotypic doublets were removed 
(removeDoublet).

Quality control. Cells expressing <100 or >6,000 genes, >25,000 
UMIs or with a log10(UMI per gene) <0.8 were removed. Cells with TSS 
enrichment <7 and <1,000 unique fragments were also filtered out. 
Genes expressed in <10 cells or <3 in total count were removed. This left 
46,782 cells (median TSS enrichment of 14.6, median fragment count 
of 13,821) and 26,660 genes.

Cell type/state annotations and non-HSC filtering. We assigned 
identity of HSPCs and contaminating cells by mapping our scRNA-seq 
data to two healthy donor reference bone-marrow mononuclear cell 
scRNA-seq datasets from ref. 24 (reference dataset 1, supervised PCA) 
and ref. 25 (reference dataset 2, PCA) with Seurat (v.4.0). Cells with 
non-HSPC labels from either mapping were filtered out, leaving 46,156 
HSPCs.

Multimodal dimensionality reduction for HSPCs was performed 
(iterativeLSI) for scRNA (gene expression matrix) and scATAC (tile 
matrix). Both modalities were batch-corrected (Harmony) and com-
bined (addCombinedDims) before clustering on the combined dimen-
sions (resolution of 0.4, smart local moving algorithm). HSPC identity 
was finalized by assigning the majority RNA mapping identity from 
reference dataset 1 per cluster. Progenitor cells were thus filtered out 
and only 29,336 HSCs retained for downstream analysis.

Progenitor cell differential abundance analysis. Hematopoietic 
progenitor cells from the above filtering step (n = 16,820) were com-
pared across sepsis and HC conditions by two-sided Wilcoxon rank-sum 
tests with FDR adjustment for multiple testing to look for differential 
abundance.

HSC peak calling and reclustering. Each individual sample was pseu-
dobulked for peak calling with MACS2 and iterative peak overlapping 
removal65 within ArchR (minimum cells = number of cells in the sample 
with the fewest cells, minimum replicates = 5 (lowest sample group size 
that is convalescent sepsis samples)). We re-performed dimensional-
ity reduction and batch correction on the gene expression and peak 
matrices before reclustering HSCs on combined dimensions (smart 
local moving algorithm, resolution = 0.2 to avoid overclustering and 
challenging interpretability given the purity of the cell type already). 
Cluster C2 was derived from only one single sample.

HSC differential abundance analysis. HSC cluster DA changes across 
conditions were conducted in MiloR (v.1.2.0). The 60 batch-corrected 
reduced dimensions (30 each of scRNA/scATAC) were used in MiloR 
k-NN graph construction (k = 20) and neighborhood indexing (propor-
tion = 0.3). DA testing was performed with generalized linear models, 
including age and sex as covariates (neighborhoods were significant 
if spatially corrected FDR < 0.05).

Granulopoiesis gene set enrichment scoring for single cells. We 
reanalyzed HCA HSPC scRNA-seq data, utilizing annotations from Hay 
et al.26 to contrast all granulocytic progenitors with HSCs, multilineage 
progenitors, monocyte/DC progenitors, lymphoid-primed multipotent 
progenitors and megakaryocyte/erythroid progenitors to define a 
granulopoietic gene set. We scored our HSCs with this gene set (Seurat 
AddModuleScore) and compared differential gene set activity across 
HSC clusters with a Kruskal–Wallis test and post hoc Dunn’s test with 
FDR adjustment.

DGE and chromatin accessibility analysis. Genes defining the C5 and 
C7 HSC clusters (versus C6) were identified with Wilcoxon tests (get-
MarkerFeatures) with thresholds of FDR < 0.05 and FC > 1.5. Genomic 
regions defining the C5 and C7 HSC clusters were identified with Wil-
coxon tests (getMarkerFeatures) with thresholds of FDR < 0.05 and 
FC > 1.5.

Bulk ATAC/TF motif enrichment analysis and ChIP-seq dataset 
overlapping. Differentially open peak regions for clusters C5 and C7 
were taken for bulk ATAC/TF motif enrichment analyses (peakAnno 
Enrichment). We also input the differentially open peak regions into 
the cistromeDB toolkit (http://dbtoolkit.cistrome.org/)66 (top 1,000 
peaks according to peak enrichment used).

Integrative trajectory analysis. Pseudotemporal trajectories was 
constructed (addTrajectory) on the combined batch-corrected 
LSI dimensions with clusters C6–C5 (enriched in HC/SRS1, respec-
tively) and C6–C7 (enriched in HC/sepsis, respectively) as the back-
bone. Trajectories for both gene expression and TF motifs were 
extracted (getTrajectory) and correlated (correlateTrajectories,  
maxDist 500 kb).

Gene regulatory network construction and in silico knockout/
overexpression analyses. We built gene regulatory networks (GRNs) 
with CellOracle (v.10.10)67 following tutorials from https://morris-lab.
github.io/CellOracle.documentation/. In brief, HSPC scATAC data 
were used to build the base GRN via Cicero68, following which, scRNA 
data were used to prune the GRN though a Bagging Ridge model. 
Instead of recomputing principal components for the scRNA data for 
GRN construction, we instead used the batch-corrected joint ATAC 
and RNA LSI dimensions. Effects on gene expression of HSC clusters 
C5/6/7 when perturbing specific TFs (CEBPB, CEBPA and STAT3) were 
simulated by setting expression of the TF either to 0 or double the 
value of its maximum expression, with CellOracle then predicting 
based on the new simulated gene expression changes the trajectory 
of cellular transition.
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RNA velocity and vector field analyses. We recapitulated expression 
dynamics vector fields with dynamo (v.1.1.0 (ref. 69)) following tutorials 
from https://dynamo-release.readthedocs.io/en/latest/. In brief, HSPC 
scRNA raw sequencing data that are FASTQ files were reprocessed 
by STARsolo (v.2.7.9a) (GRCh38) and spliced and unspliced counts 
produced for the already identified HSPCs. RNA velocity, acceleration 
and curvature were then calculated for clusters C5/6/7. Effects on RNA 
velocity on HSC clusters C5/6/7 when perturbing specific TFs (CEBPB, 
CEBPA and STAT3) were simulated by setting expression of the TF to 
0. The effect of a change in expression of these TFs on the regulation 
(activation versus inhibition) of each other was also analyzed by cal-
culating the RNA Jacobian for the HSCs.

SRS assignment for neutrophil functional assay samples and 
scHSPC samples not part of scWB or mmV cohorts
Whole blood was sampled into Tempus tubes (Thermo Fisher) and 
stored at −80 °C until RNA extraction with Norgen Preserved Blood 
RNA Purification kit I (43400) according to the manufacturer’s instruc-
tions. RNA was used for quantitative PCR with reverse transcription 
for the seven SRS genes and Cq values input into SepstratifieR for SRS 
assignment as previously described57.

Bulk RNA-seq analysis
Analysis was performed with v.4.0.0 R. The EdgeR TMM normalized 
count matrix was obtained from the COMBAT consortium31 and SRS 
assignment was conducted as for scWB samples.

WGCNA. WGCNA (v.1.70-3) was conducted as per the vignettes from 
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/
Rpackages/WGCNA/Tutorials/ with the log normalized count matrix. 
A signed-hybrid network (soft threshold of 4) was constructed with 
biweight mid-correlation. Minimum module size was 30. Modules with 
eigengene correlation <0.2 were merged, leaving 33 modules.

Pathway analysis. Pathway analysis was performed against neutrophil 
gene sets from the HCA26 and signatures of differentiating neutrophils 
from mouse single-cell transcriptomics32 (ClusterProfiler enricher). 
Gene set enrichment analysis for scWB IL1R2+ neutrophil defining 
genes was performed via the gene set enrichment analysis function 
against all genes in module 10 ranked by their correlation with the 
module eigengene.

CyTOF analysis
Analysis was performed with v.4.0.0 R.

Preprocessing. Normalized, debarcoded, bead and doublet-cleaned 
FCS files were obtained from the COMBAT consortium31. To avoid 
biases due to highly varying cell numbers per sample, a maximum 
of 50,000 cells per sample was taken. Harmony (v.1.0)70 was used for 
batch correction71.

Clustering, trajectory inference and differential abundance analy-
ses. Clustering and consensus clustering were performed with the 
CATALYST package (v.1.14.0)72,73 with all cells and 41 markers. The 
50 metaclusters were merged following manual annotation. As the 
41-marker panel was myeloid focused, we annotated five monocyte 
clusters, before subsetting the neutrophils and reclustering with 17 
selected markers. Thirty neutrophil metaclusters were manually anno-
tated and merged based on median marker expression74 into eight 
subsets, leaving a final total of 22 clusters at the finest level of annota-
tion (14 non-neutrophil and eight neutrophil).

For trajectory analysis, neutrophils were downsampled to 15,000 
cells per comparator group for CATALYST diffusion map dimension-
ality reduction followed by principal curve fitting (Slingshot v.1.8.0, 
default settings)75.

PCA of cluster proportions was performed after quantile normali-
zation. Cluster DA analysis with FDR adjustment was performed with 
generalized linear mixed models (glmmPQL function, MASS package, 
v.7.3-51.6) to account for repeated sampling in six patients, with batch 
included as an additional fixed effect and patient a random effect. An 
extra random effect term per sample was included to model over-
dispersion in proportions seen in high dimensional cytometry data73.

Multimodal analysis by MOFA+
We integrated mmV bulk RNA-seq and CyTOF data with MOFA+ 
(v.1.0.1)76, including 105 plasma protein measurements (timsTOF mass 
spectrometry) from the same patient samples31 as a computational 
negative control, reasoning that the latent spaces linking cell clusters 
to gene expression profiles should not show an overly strong contri-
bution from the plasma proteome, which reflects contributions from 
various tissues, whereas the RNA was derived solely from leukocytes. 
For each sample, the eigengenes of the 33 identified modules from 
WGCNA, quantile normalized proportion of the 22 cell clusters from 
CyTOF and log2-transformed and median centered intensity values 
for 105 plasma proteins were utilized. Views were left unscaled and all 
other model options were left with default values.

Cytokine analysis
Concentrations of plasma analytes from the Luminex assay were 
obtained from the COMBAT consortium31.

brWB-CID bulk transcriptomic analysis
A signature matrix for CIBERSORTx77 was constructed using our scWB 
single-cell dataset, with each finely annotated population except 
apoptosing cells downsampled to 100 cells per population. The 
signature matrix was then created via the Create Signature Matrix 
analysis module with min.expression = 0.25, replicates = 100 and 
sampling = 0.5.

SRS was assigned for the bulk transcriptomic data of sample set 3 
as described for cohorts 1 and 2. Cell fractions of the 1,578 whole-blood 
bulk transcriptomic samples of sample set 3 were then estimated 
with the Impute Cell Fractions analysis module using the single-cell 
reference matrix, with batch correction S-mode enabled quantile 
normalization disabled for RNA-seq datasets. DGE was performed 
across SRS for each cohort and SRS1 upregulated genes were tested 
for enrichment of the union of genes of all three STAT3 GEPs from 
scWB neutrophil cNMF.

scWB-CID scRNA-seq analysis
ARDS52 and COVID-19 (ref. 13) whole-blood scRNA-seq data were 
mapped to the scWB data (Seurat FindTransferAnchors and MapQuery) 
and cell type/state proportions examined. We then scored the neutro-
phils for scWB neutrophil cNMF STAT3 GEPs (Seurat AddModuleScore).

Statistics and reproducibility
In addition to the above details of statistical methods, we ensured 
analytical rigor with the following procedures.

For scWB, we estimated from existing data5,18 that the smallest 
SRS group would be one-third of the recruited patients with sepsis; we 
opted to recruit 26 patients for a minimum of 8 patients in the small-
est group. No sample size calculations were performed. Cells from 
all study participants were used to determine cell states. For scHSPC, 
three convalescent sepsis samples were excluded (above), after which 
all 27 samples were used for all analysis. Sample size was determined 
to be adequate based on the degree and consistency of differences 
between groups.

For scWB and scHSPC, sequencing batches were prepared such 
that each batch contained samples from all comparator groups (acute 
sepsis, HCs, after CS and convalescent sepsis). SRS groups were not 
known at the time of patient recruitment and data generation.
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Cells from all samples in scWB, mmV CyTOF and scHSPC were 
analyzed blind to which patient they originated from to define the 
varying cell states.

Data distributions were assumed to be normal for (generalized) 
linear models but this was not formally tested. Box plots denote mini-
mum and maximum with whiskers and bottom quartile, median and 
upper quartile with the box.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw data for whole-blood single-cell sequencing and HSC single-cell 
sequencing datasets are deposited on the European Genome–phenome 
Archive (EGAS00001006283) and derived data are at Zenodo (https://
doi.org/10.5281/zenodo.7723202). For sequence-level raw datasets 
deposited at the European Genome–phenome Archive, access is man-
aged by a Data Access Committee.

Code availability
Code used for every algorithm followed in data processing and analysis 
is fully referenced within the specific Methods sections.
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Extended Data Fig. 1 | scWB single-cell RNA and cell surface profiling 
annotation, clustering and neutrophil RNA velocity analysis. a, UMAP of 
272,993 cells with TotalVI denoised surface protein marker expression overlaid for 
selected lineage defining markers. b, Cell surface expression of proteins denoting 
neutrophil maturation stages for annotated neutrophil subsets. Boxplots denote 
minimum and maximum with whiskers and bottom quartile, median and upper 
quartile with the box. c, Comparison of broad annotations (Methods ‘Whole blood 
single cell multi-omic analysis (scWB)’) with data driven algorithmic labeling 
of cell identity by SingleR based on reference bulk RNA-seq profiles of pure cell 
populations from the Blueprint Consortium. d, Proportions of neutrophils and 

lymphocytes and HLA-DRA and HLA-DRB1 gene expression in classical monocytes 
in healthy controls (HC) (n = 6), sepsis (n = 26) and post-cardiac surgery (CS) 
(n = 7) samples. Boxplots denote minimum and maximum with whiskers and 
bottom quartile, median and upper quartile with the box. e, Clustering results at 
varying resolutions (0.8–1.1) for fine annotation strategy. f–i, Heat maps of gene 
markers for (f ) PADI4+ immature neutrophils (g) IL1R2+ immature neutrophils (h) 
MPO+ immature neutrophils/progenitors and (i) cycling neutrophil progenitors. 
j, UMAP of neutrophils (excluding degranulating neutrophils) with RNA velocity 
stream directions plotted. k, Partition-based graph abstraction analysis of RNA 
velocity predicted cellular trajectory transitions. Neu, neutrophils.
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Extended Data Fig. 2 | ScWB healthy control (HC)-post-cardiac surgery 
(CS) and CS-sepsis cell type/state differential abundance (DA) analysis and 
sepsis neutrophil-CD4+ T cell immunosuppression. a, DA analysis using 
graph neighborhood-based method to detect enrichment of neighborhoods 
between CS and HC samples, with UMAP of sampled neighborhoods and 
statistically significant enrichment colored (spatial FDR < 0.05 with generalized 
linear modeling). b, Beeswarm plot of CS-HC DA analysis with cluster labels of 
neighborhoods depicted. c, UMAP of DA analysis between CS and sepsis. Nhood, 
neighborhood; logFC, log fold change. d, Proportions of immature neutrophil 
populations as a percentage of total neutrophils across comparator groups 
(n = 26 sepsis, n = 6 HC, n = 7 CS). Boxplots denote minimum and maximum with 
whiskers and bottom quartile, median and upper quartile with the box.  
e, Percentage of live, non-apoptotic CD4+ T cells after 72–96 hours of co-culture 
with either HC or sepsis neutrophils. Error bars denote standard error of the 
mean. f, Correlations (Spearman’s Rho) of proportions of each neutrophil subset 
as measured from single-cell RNA and cell surface protein profiling from sepsis 
patients with neutrophil-CD4+ T cell co-culture suppression readouts (n = 11). 
g, Percentage of CD4+ T cells proliferating, expressing PD-1 or expressing CD69 

in sepsis neutrophil-allogeneic T cell co-cultures with various treatments 
compared to untreated (UT) control (n = 6). Untreated (UT), 15 μM TG6−10-1 (PG 
EP2 receptor antagonist), 15 μM GW-627368 (PG EP4 receptor antagonist), 10 μM 
indomethacin (COX inhibitor), 10 ng/mL anti-PD-L1/2, 1 mM L-arginine + 1 μM 
arginase-1 inhibitor. Boxplots denote minimum and maximum with whiskers 
and bottom quartile, median and upper quartile with the box. h, Gene set 
enrichment analysis of MsigDB C2 prostaglandin related pathways for sepsis vs. 
HC neutrophil differential gene expression. i, Violin plots of gene set scoring of 
mature and immature neutrophils in sepsis and healthy control (HC) samples by 
gene signatures of granulocytic myeloid-derived suppressor cells (G-MDSC)22,23. 
P-values for gene set scoring were calculated with two-sided Wilcoxon rank-
sum tests while P-values for co-culture inhibition reversal were calculated with 
two-sided Wilcoxon signed-rank tests. Neu, neutrophils; Cycling progen, cycling 
neutrophil progenitors; IL1R2+/IL1R2+ immature, IL1R2+ immature neutrophils; 
MPO+, MPO+ immature neutrophils or progenitors; PADI4+, PADI4+ immature 
neutrophils; PG, prostaglandin; COX, cyclo-oxygenase; NES, normalized 
enrichment score; FDR, false discovery rate. *P < 0.05, ****P < 0.0001.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | scWB convalescent sepsis neutrophil analysis 
and scHSPC hematopoietic stem and progenitor cell (HSPC) RNA based 
identity mapping. a, Boxplots of proportions of neutrophil states in HC 
vs. convalescent sepsis samples from scWB. Boxplots denote minimum and 
maximum with whiskers and bottom quartile, median and upper quartile with 
the box. b, Proliferative fraction of anti-CD3/28 bead-stimulated CD4+ T cells 
after co-culture with neutrophils at a 4 neutrophil:1 T cell ratio, compared to 
positive controls of CD4+ T cells cultured with anti-CD3/28 beads alone (n = 10 
HC, n = 9 convalescent sepsis). Boxplots denote minimum and maximum with 
whiskers and bottom quartile, median and upper quartile with the box. c,d, 
HSPC (right) mapping to (c) Seurat bone marrow mononuclear cell (BMMC) 
dataset24 (left) and (d) healthy donor BMMC dataset from Granja et al.25 (left). 
e, UMAP of HSPCs clustered on Harmony batch corrected RNA and chromatin 
reduced dimensions after non-HSPCs were filtered out (46,156 cells; Methods). 
f, UMAP colored by RNA prediction identities from HSPC mapping to Seurat 
BMMC dataset. g, UMAP of progenitor cells alone clustered on Harmony batch 
corrected RNA and chromatin reduced dimensions (16,820 cells; Methods). 
h, Boxplots of progenitor cell clusters as a proportion of total progenitor cells 

(n = 15 acute sepsis, n = 7 HC). Boxplots denote minimum and maximum with 
whiskers and bottom quartile, median and upper quartile with the box. i, Heat 
map of genes defining progenitor clusters with known lineage defining genes 
highlighted. j, Boxplots of HSC clusters as a proportion of total HSCs (n = 15 
acute sepsis, n = 7 HC). Boxplots denote minimum and maximum with whiskers 
and bottom quartile, median and upper quartile with the box. k, UMAP of 
CD34+ HSPCs from annotated Human Cell Atlas bone marrow mononuclear cell 
(BMMC) scRNA-seq data26 for deriving granulopoiesis gene set (Methods). Neu, 
neutrophils; c/pDC, conventional/plasmacytoid dendritic cell; GMP, granulocyte 
monocyte progenitor; LMPP, lymphoid-primed multipotential progenitors; NK, 
natural killer; Prog, progenitor; Mk, megakaryocyte; RBC, red blood cell; Eryth, 
erythrocyte; CMP, common myeloid progenitor; Mono, monocyte; CD4 N1/2, 
CD4+ naïve T cell 1/2; CD4 M, memory CD4+ T cell; CD8 CM, central memory 
CD8+ T cell; PC, plasma cell; MDP, monocyte/dendritic cell progenitor; MultiLin, 
multilineage progenitor; MEP, megakaryocyte/erythroid progenitor; MKP 
megakaryocyte progenitor; ERP, erythrocyte progenitor; Eo, eosinophil; Mast, 
mast cell.
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Extended Data Fig. 4 | scWB scRNA-seq data substructure and concordance 
with transcriptomic sepsis response signature (SRS) endotypes. a, First two 
principal components from principal components analysis of pseudobulked 
single-cell expression profiles of sepsis samples colored by SRS assignment. 
b, Pearson’s correlation of fold change in gene expression between SRS1 vs. 
non-SRS1 (sample level pseudobulks) in scWB and cohort in which SRS was 

originally derived5. c, Consensus clustering of pseudobulked single-cell gene 
expression profiles of sepsis samples (all cells per sample) at the level of two 
clusters. d, Overlaps of consensus clustering classification vs. SRS classification. 
e, Unsupervised hierarchical clustering of pseudobulked single-cell expression 
profiles of sepsis samples. SRS, sepsis response signature.
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Extended Data Fig. 5 | scWB scRNA-seq SRS gene expression analysis and 
SRS neutrophil functional interrogation. a, b, Volcano plots of DGE analysis 
between SRS groups for pseudobulked (a) neutrophil states and (b) mononuclear 
cells (red denoting genes with fold change > 1.2 and FDR < 0.1) (positive fold 
change denoting upregulation in SRS1). c, Correlation (Spearman’s Rho 95% 
confidence interval) of SRS1 sample median neutrophil IL1R2 gene expression 
as measured by scRNA-seq with median neutrophil IL1R2 cell surface protein 
expression as measured by flow cytometry (n = 14). d, Proliferative fraction of 
anti-CD3/28 bead-stimulated CD4+ T cells after co-culture with neutrophils at a 

4 neutrophil:1 T cell ratio, compared to positive controls of CD4+ T cells cultured 
with anti-CD3/28 beads alone (n = 6 SRS1, n = 13 non-SRS1). Boxplots denote 
minimum and maximum with whiskers and bottom quartile, median and upper 
quartile with the box. e, Neutrophil phagocytosis with and without GM-CSF 
stimulation (n = 15). Boxplots denote minimum and maximum with whiskers and 
bottom quartile, median and upper quartile with the box. P-values for neutrophil 
functional assays were calculated with two-sided Wilcoxon rank-sum tests. SRS, 
sepsis response signature; FDR, false discovery rate; ns, not significant. Neu, 
neutrophils.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | MmV validation of neutrophil immaturity underlying 
SRS1. a, First two principal components from principal components analysis 
of n = 42 sepsis patient samples (36 individuals) for peripheral blood bulk RNA-
seq (23,063 genes). b, Kaplan-Meier survival by SRS (log-rank test P-value, 95% 
confidence intervals). c, Heat map of 15 immune cell clusters (with neutrophil 
clusters merged; Methods) from clustering on 41 protein markers for n = 41 
sepsis (36 individuals) and n = 11 healthy control (HC) samples. d, UMAP of nine 
broad immune cell types (2,287,410 cells) from CyTOF immunophenotyping. 
e, Marker enrichment modeling (MEM) score heat map of eight neutrophil 
clusters (1,921,471 cells), identified from neutrophil subclustering on 17 selected 
protein markers. f, g, UMAP of (f ) neutrophil subsets showing (g) density-based 
distribution by SRS/healthy control (HC) status. h, Neutrophil cluster frequency 
as a proportion of all cells with proportional differences across SRS analyzed 
by generalized linear mixed models (n = 41 samples, 36 individuals). i, Diffusion 
map dimensionality reduction of neutrophils. Boxplots denote minimum and 
maximum with whiskers and bottom quartile, median and upper quartile with 

the box. j, Diffusion components 1 and 2 with black line depicting trajectory 
identified by principal curve fitting. Color reflects pseudotime value of cell 
with red indicating early pseudotime and blue late pseudotime. k, Dotplot 
of neutrophil subsets according to pseudotemporal ordering from principal 
curve trajectory with median and interquartile range. l, Density distribution 
of neutrophils over pseudotime with Kolmogorov-Smirnov test for SRS1 vs. 
non-SRS1 distributions. m, CyTOF PCA using proportions of all cells (left), only 
mononuclear cells (MNC, middle) and only neutrophils (right) with 95% data 
ellipses (assuming a multivariate t-distribution). SRS, sepsis response signature; 
cMono, classical monocyte; ncMono, non-classical monocyte; NK cell, natural 
killer cell; Neu, neutrophil; pro-neu, pro-neutrophil; pre-neu, pre-neutrophil; 
imm neu, immature neutrophil; int neu, intermediate neutrophil; int inf neu, 
intermediate inflammatory neutrophil; mature neu, mature neutrophil; MNP, 
mononuclear phagocytes; DC, diffusion component; FDR, false discovery rate.  
* FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001.
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Extended Data Fig. 7 | MmV factor analysis (MOFA+) and brWB-CID validation 
of SRS1 IL1R2+ immature neutrophil expansion. a-j MmV. a, Differentially 
expressed modules in whole blood bulk RNA-seq (FDR < 0.01, two-sided 
Wilcoxon rank-sum test) (n = 26 SRS1, n = 16 non-SRS1). Violin plots with median, 
95% confidence interval and interquartile range. b, Enrichment of neutrophil 
related gene sets of weighted gene co-expression network analysis (WGCNA) 
modules upregulated in SRS1. c, Correlation (and 95% confidence interval) of 
module 10 eigengene expression with percentage of immature neutrophils 
from mass cytometry (CyTOF) per sample of mmV. d, Leading edge analysis for 
enrichment of scWB derived IL1R2+ immature neutrophil defining signature 
in module 10. e, IL1R2+ immature neutrophil (top) and cycling neutrophil 
progenitor (bottom) proportions following total leukocyte bulk transcriptomics 
deconvolution of n = 542 sepsis patients (brWB-CID microarray data)5,18. Boxplots 
denote minimum and maximum with whiskers and bottom quartile, median 
and upper quartile with the box. f, Input data into MOFA+77 model consisting 
of three modalities (105 plasma proteins, 33 module eigengenes (eigen) from 

WGCNA and 22 cell clusters from CyTOF) for n = 36 sepsis samples with one 
and six missing samples for CyTOF and plasma proteomics respectively. g, 
Scatter-plots of latent factor values for sepsis patients. h, Factor values by SRS 
groups (two-sided Wilcoxon rank-sum test) (n = 26 SRS1, n = 16 non-SRS1). Violin 
plots with median, 95% confidence interval and interquartile range. i, Variance 
decomposition showing percentage variance explained for individual modalities 
by each latent factor. j, Latent factor two weights per cell cluster (top) and 
gene module (bottom). k, Latent factor one weights per cell cluster (top) and 
gene module (bottom). SRS, sepsis response signature; Neu, neutrophil; imm 
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** FDR < 0.01, **** FDR < 0.0001, NS, not significant.
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Extended Data Fig. 8 | Hematopoietic stem cell (HSC) SRS differential 
abundance (DA) and clusters C5 and C7 peak set analysis. a, HSC DA across SRS 
with UMAP showing sampled neighborhoods colored by statistically significant 
enrichment (spatial FDR < 0.05). b, c, Volcano plots of differentially accessible 
(DA) peaks (fold change > 1.5, FDR < 0.05) for HSC (b) cluster C5 vs. all other 
clusters and (c) cluster C7 s. all other clusters (Wilcoxon rank-sum test). d, e, 
Enrichment of bulk ATAC-seq profiles in differentially open peaks for clusters 

(d) C5 (184 peaks) and (e) C7 (718 peaks). f, g, Enrichment of transcription 
factor (TF) motifs of differentially open peaks for clusters (f ) C5 and (g) C7. h, 
ChIP-seq overlap analysis for cluster C7 differentially open peaks. The Giggle 
score denotes a composite significance and effect size scoring (doi:10.1038/
nmeth.4556). Nhood, neighborhood; SRS, sepsis response signature; FDR, false 
discovery rate; ChIP, chromatin immunoprecipitation.
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Extended Data Fig. 9 | Hematopoietic stem cell (HSC) trajectory and vector 
field analysis, and transcription factor (TF) knockout and overexpression 
analysis. a, UMAP of HSCs with supervised pseudotime trajectory from cluster 
C6 (HC enriched) to cluster C7 (sepsis but not SRS1 enriched). b, STAT3 and 
CEBPB gene expression with pseudotime. c, Genes (left) and TF motifs (right) 
which change along C6−C7 pseudotime trajectory and correlate with each other 
(Pearson’s r > 0.5, FDR < 0.05). d, CEBPA gene expression with pseudotime. e, 
CellOracle68 in silico knockout (top) and overexpression (bottom) of CEBPA and 
CEBPB and effects on clusters C5/6/7, with arrows displaying predicted changes 
in cell fate after gene of interest is perturbed (Methods). f–i, HSC clusters C5/6/7 

vector field analysis with dynamo70. f, UMAP of HSC clusters C5/6/7 with RNA 
velocity stream directions plotted. g, RNA velocity based pseudotime of HSC 
clusters C5/6/7. h, dynamo acceleration and curvature vector fields. i, In silico 
knockout of CEBPA (left), CEBPB (middle) and STAT3 (right) and effects on 
clusters C5/6/7 with arrows displaying predicted changes in cell fate after gene 
of interest is perturbed. j, dynamo Jacobian analysis of gene-gene regulatory 
relationships. Scatter-plots show normalized expression values of genes of 
interest along x and y axes. Blue denotes inhibition of the numerator gene by the 
denominator gene in the Jacobian partial derivative, while red denotes activation 
of the numerator by the denominator.
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SRS1
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Extended Data Fig. 10 | SRS1 signatures across differing clinical contexts 
of infectious disease. a–e, BrWB-CID contexts 2–7. a, Cycling neutrophil 
progenitor proportions following whole blood bulk transcriptomics 
deconvolution in 6 cohorts of infectious disease patients defined by infecting 
organism (n = 77 COVID-19 and n = 109 influenza, top), source of infection 
(n = 438 community acquired pneumonia and n = 229 fecal peritonitis, middle) 
and clinical syndrome (n = 77 adult acute respiratory distress syndrome (ARDS) 
and n = 106 pediatric septic shock, bottom). Boxplots denote minimum and 
maximum with whiskers and bottom quartile, median and upper quartile with 
the box. Two-sided Wilcoxon rank-sum test comparing SRS1 and non-SRS1 
groups. b, Gene set enrichment analysis of scWB STAT3 gene expression 

programs (GEPs) (the union of all three GEPs, STAT3-union-GEP) in SRS1 
upregulated genes for each of the 6 cohorts. c, IL1R2+ immature neutrophil 
proportions in COVID-19 whole blood scRNA-seq cohort (n = 8) after referencing 
mapping of dataset to scWB reference single cell atlas. d, Violin plots of scWB 
neutrophil STAT3 GEP expression in COVID-19 neutrophils as defined by scWB 
neutrophil states. Two-sided Wilcoxon rank-sum test comparing SRS1 and 
non-SRS1 groups. e, Violin plots of scWB neutrophil STAT3-union-GEP expression 
in all COVID-19 neutrophils. Two-sided Wilcoxon rank-sum test comparing SRS1 
and non-SRS1 groups. SRS, sepsis response signature; Neu, neutrophil. *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001.
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