Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macrophage function in adipose tissue homeostasis and metabolic inflammation

An Author Correction to this article was published on 11 December 2023

This article has been updated

Abstract

Obesity-related metabolic organ inflammation contributes to cardiometabolic disorders. In obese individuals, changes in lipid fluxes and storage elicit immune responses in the adipose tissue (AT), including expansion of immune cell populations and qualitative changes in the function of these cells. Although traditional models of metabolic inflammation posit that these immune responses disturb metabolic organ function, studies now suggest that immune cells, especially AT macrophages (ATMs), also have important adaptive functions in lipid homeostasis in states in which the metabolic function of adipocytes is taxed. Adverse consequences of AT metabolic inflammation might result from failure to maintain local lipid homeostasis and long-term effects on immune cells beyond the AT. Here we review the complex function of ATMs in AT homeostasis and metabolic inflammation. Additionally, we hypothesize that trained immunity, which involves long-term functional adaptations of myeloid cells and their bone marrow progenitors, can provide a model by which metabolic perturbations trigger chronic systemic inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Macrophage phenotypes in the AT.
Fig. 2: Adaptive and maladaptive functions of ATMs.
Fig. 3: From obesity-related AT inflammation to systemic inflammation.

Similar content being viewed by others

Change history

References

  1. Bluher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019).

    PubMed  Google Scholar 

  2. John, H. J. Summary of findings in 1,100 glucose tolerance estimations. Endocrinology 13, 388–392 (1929).

    Google Scholar 

  3. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Emerging Risk Factors Collaboration et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

    Google Scholar 

  5. Spranger, J. et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52, 812–817 (2003).

    CAS  PubMed  Google Scholar 

  6. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).

    CAS  PubMed  Google Scholar 

  8. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chatzigeorgiou, A., Karalis, K. P., Bornstein, S. R. & Chavakis, T. Lymphocytes in obesity-related adipose tissue inflammation. Diabetologia 55, 2583–2592 (2012).

    CAS  PubMed  Google Scholar 

  11. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  PubMed  Google Scholar 

  12. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    CAS  PubMed  Google Scholar 

  13. Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 271, 665–668 (1996).

    CAS  PubMed  Google Scholar 

  14. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    CAS  PubMed  Google Scholar 

  15. Tuncman, G. et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 103, 10741–10746 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed  Google Scholar 

  17. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    CAS  PubMed  Google Scholar 

  21. Lee, B. C. et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 23, 685–698 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wensveen, F. M. et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16, 376–385 (2015).

    CAS  PubMed  Google Scholar 

  23. Silva, H. M. et al. Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. J. Exp. Med. 216, 786–806 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune–adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    CAS  PubMed  Google Scholar 

  27. Chung, K. J. et al. A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nat. Immunol. 18, 654–664 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y. N. et al. Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue. Nat. Metab. 3, 1536–1551 (2021).

    CAS  PubMed  Google Scholar 

  29. Knights, A. J. et al. Acetylcholine-synthesizing macrophages in subcutaneous fat are regulated by β2-adrenergic signaling. EMBO J. 40, e106061 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lindhorst, A. et al. Adipocyte death triggers a pro-inflammatory response and induces metabolic activation of resident macrophages. Cell Death Dis. 12, 579 (2021).

    CAS  Google Scholar 

  31. Lee, Y. S. et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishimoto, S. et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci. Adv. 2, e1501332 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Cancello, R. et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55, 1554–1561 (2006).

    CAS  PubMed  Google Scholar 

  34. Harman-Boehm, I. et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J. Clin. Endocrinol. Metab. 92, 2240–2247 (2007).

    CAS  PubMed  Google Scholar 

  35. Chen, Q. et al. Resident macrophages restrain pathological adipose tissue remodeling and protect vascular integrity in obese mice. EMBO Rep. 22, e52835 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho, K. W. et al. Adipose tissue dendritic cells are independent contributors to obesity-induced inflammation and insulin resistance. J. Immunol. 197, 3650–3661 (2016).

    CAS  PubMed  Google Scholar 

  37. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hadad, N. et al. Induction of cytosolic phospholipase A2α is required for adipose neutrophil infiltration and hepatic insulin resistance early in the course of high-fat feeding. Diabetes 62, 3053–3063 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mansuy-Aubert, V. et al. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 17, 534–548 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Boulenouar, S. et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity 46, 273–286 (2017).

    CAS  PubMed  Google Scholar 

  41. Ramkhelawon, B. et al. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat. Med. 20, 377–384 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Amano, S. U. et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 19, 162–171 (2014).

    CAS  PubMed  Google Scholar 

  43. Haase, J. et al. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 57, 562–571 (2014).

    CAS  PubMed  Google Scholar 

  44. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    CAS  PubMed  Google Scholar 

  45. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cox, N. et al. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 373, eabe9383 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Harasymowicz, N. S. et al. Single-cell RNA sequencing reveals the induction of novel myeloid and myeloid-associated cell populations in visceral fat with long-term obesity. FASEB J. 35, e21417 (2021).

    CAS  PubMed  Google Scholar 

  48. Felix, I. et al. Single-cell proteomics reveals the defined heterogeneity of resident macrophages in white adipose tissue. Front. Immunol. 12, 719979 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, P. et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shan, B. et al. Perivascular mesenchymal cells control adipose-tissue macrophage accrual in obesity. Nat. Metab. 2, 1332–1349 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarvari, A. K. et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 33, 437–453 (2021).

    CAS  PubMed  Google Scholar 

  52. Fazeli, P. K. et al. Prolonged fasting drives a program of metabolic inflammation in human adipose tissue. Mol. Metab. 42, 101082 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang, J. C. et al. Adaptive adipose tissue stromal plasticity in response to cold stress and antibody-based metabolic therapy. Sci. Rep. 9, 8833 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Lumeng, C. N., DelProposto, J. B., Westcott, D. J. & Saltiel, A. R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57, 3239–3246 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Muir, L. A. et al. Human CD206+ macrophages associate with diabetes and adipose tissue lymphoid clusters. JCI Insight 7, e146563 (2022).

  57. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wentworth, J. M. et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59, 1648–1656 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Catrysse, L. et al. A20 deficiency in myeloid cells protects mice from diet-induced obesity and insulin resistance due to increased fatty acid metabolism. Cell Rep. 36, 109748 (2021).

    CAS  PubMed  Google Scholar 

  60. Ackermann, J. et al. Myeloid cell-specific IL-4 receptor knockout partially protects from adipose tissue inflammation. J. Immunol. 207, 3081–3089 (2021).

    CAS  PubMed  Google Scholar 

  61. Hill, D. A. et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc. Natl Acad. Sci. USA 115, E5096–E5105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    CAS  PubMed  Google Scholar 

  63. Boutens, L. et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia 61, 942–953 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Coats, B. R. et al. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep. 20, 3149–3161 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Flaherty, S. E. 3rd et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science 363, 989–993 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, J. et al. TFEB–GDF15 axis protects against obesity and insulin resistance as a lysosomal stress response. Nat. Metab. 3, 410–427 (2021).

    CAS  PubMed  Google Scholar 

  67. Weinstock, A. et al. Single-cell RNA sequencing of visceral adipose tissue leukocytes reveals that caloric restriction following obesity promotes the accumulation of a distinct macrophage population with features of phagocytic cells. Immunometabolism 1, e190008 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Haka, A. S. et al. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation. J. Lipid Res. 57, 980–992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Braune, J. et al. Multinucleated giant cells in adipose tissue are specialized in adipocyte degradation. Diabetes 70, 538–548 (2021).

    CAS  PubMed  Google Scholar 

  70. Marcelin, G. et al. A PDGFRα-mediated switch toward CD9high adipocyte progenitors controls obesity-induced adipose tissue fibrosis. Cell Metab. 25, 673–685 (2017).

    CAS  PubMed  Google Scholar 

  71. Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vijay, J. et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat. Metab. 2, 97–109 (2020).

    PubMed  Google Scholar 

  73. Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Blaszkiewicz, M. et al. Adipose tissue myeloid-lineage neuroimmune cells express genes important for neural plasticity and regulate adipose innervation. Front. Endocrinol. 13, 864925 (2022).

    Google Scholar 

  76. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao, H. et al. Age-induced reduction in human lipolysis: a potential role for adipocyte noradrenaline degradation. Cell Metab. 32, 1–3 (2020).

    CAS  PubMed  Google Scholar 

  78. Petkevicius, K. et al. Macrophage β2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Mol. Metab. 48, 101220 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang, L. et al. Sympathetic nerve activity maintains an anti-inflammatory state in adipose tissue in male mice by inhibiting TNF-α gene expression in macrophages. Endocrinology 156, 3680–3694 (2015).

    CAS  PubMed  Google Scholar 

  80. Winn, N. C., Wolf, E. M., Garcia, J. N. & Hasty, A. H. Exon 2-mediated deletion of Trem2 does not worsen metabolic function in diet-induced obese mice. J. Physiol. 600, 4485–4501 (2022).

    CAS  PubMed  Google Scholar 

  81. Park, M. et al. Triggering receptor expressed on myeloid cells 2 (TREM2) promotes adipogenesis and diet-induced obesity. Diabetes 64, 117–127 (2015).

    CAS  PubMed  Google Scholar 

  82. Kim, J. et al. Silencing CCR2 in macrophages alleviates adipose tissue inflammation and the associated metabolic syndrome in dietary obese mice. Mol. Ther. Nucleic Acids 5, e280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Obstfeld, A. E. et al. C–C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916–925 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Parker, R. et al. CC chemokine receptor 2 promotes recruitment of myeloid cells associated with insulin resistance in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G483–G493 (2018).

    CAS  Google Scholar 

  85. Magalhaes, M. S. et al. Role of Tim4 in the regulation of ABCA1+ adipose tissue macrophages and post-prandial cholesterol levels. Nat. Commun. 12, 4434 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141 (2014).

    PubMed  Google Scholar 

  87. Mottillo, E. P., Shen, X. J. & Granneman, J. G. Role of hormone-sensitive lipase in β-adrenergic remodeling of white adipose tissue. Am. J. Physiol. Endocrinol. Metab. 293, E1188–E1197 (2007).

    CAS  PubMed  Google Scholar 

  88. Liu, Y., Wang, C., Wei, M., Yang, G. & Yuan, L. Multifaceted roles of adipose tissue-derived exosomes in physiological and pathological conditions. Front. Physiol. 12, 669429 (2021).

    PubMed  PubMed Central  Google Scholar 

  89. Kahn, C. R., Wang, G. & Lee, K. Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 129, 3990–4000 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Gesmundo, I. et al. Adipocyte-derived extracellular vesicles regulate survival and function of pancreatic β cells. JCI Insight 6, e141962 (2021).

    PubMed  PubMed Central  Google Scholar 

  91. Garcia-Martin, R. et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601, 446–451 (2022).

    CAS  PubMed  Google Scholar 

  92. Garcia-Martin, R., Brandao, B. B., Thomou, T., Altindis, E. & Kahn, C. R. Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Rep. 38, 110277 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Du, H. et al. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J. Lipid Res. 42, 489–500 (2001).

    CAS  PubMed  Google Scholar 

  94. Yan, C. et al. Macrophage-specific expression of human lysosomal acid lipase corrects inflammation and pathogenic phenotypes in lal−/− mice. Am. J. Pathol. 169, 916–926 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Al-Bari, A. A. & Al Mamun, A. Current advances in regulation of bone homeostasis. FASEB Bioadv. 2, 668–679 (2020).

    Google Scholar 

  96. Daemen, S. et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep. 34, 108626 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Remmerie, A. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53, 641–657 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, H. & Ballantyne, C. M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Invest. 127, 43–54 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dalmas, E. et al. Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat. Med. 21, 610–618 (2015).

    CAS  PubMed  Google Scholar 

  102. Shan, B. et al. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat. Immunol. 18, 519–529 (2017).

    CAS  PubMed  Google Scholar 

  103. Chan, K. L. et al. Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance. Cell Rep. 18, 2415–2426 (2017).

    CAS  PubMed  Google Scholar 

  104. Fan, R. et al. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nat. Med. 22, 780–791 (2016).

    CAS  PubMed  Google Scholar 

  105. Qin, Q. et al. Stk24 protects against obesity-associated metabolic disorders by disrupting the NLRP3 inflammasome. Cell Rep. 35, 109161 (2021).

    CAS  PubMed  Google Scholar 

  106. Goldfine, A. B. et al. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia 56, 714–723 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Goldfine, A. B. et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 159, 1–12 (2013).

    PubMed  PubMed Central  Google Scholar 

  108. Goldfine, A. B. & Shoelson, S. E. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J. Clin. Invest. 127, 83–93 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Oral, E. A. et al. Inhibition of IKKε and TBK1 improves glucose control in a subset of patients with type 2 diabetes. Cell Metab. 26, 157–170 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005).

    CAS  PubMed  Google Scholar 

  111. Bernstein, L. E., Berry, J., Kim, S., Canavan, B. & Grinspoon, S. K. Effects of etanercept in patients with the metabolic syndrome. Arch. Intern. Med. 166, 902–908 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  113. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    CAS  PubMed  Google Scholar 

  114. Bapat, S. P. et al. Obesity alters pathology and treatment response in inflammatory disease. Nature 604, 337–342 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Schmitz, J. et al. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss. Mol. Metab. 5, 328–339 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cottam, M. A., Caslin, H. L., Winn, N. C. & Hasty, A. H. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat. Commun. 13, 2950 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Blaszczak, A. M. et al. Obesogenic memory maintains adipose tissue inflammation and insulin resistance. Immunometabolism 2, e200023 (2020).

    PubMed  PubMed Central  Google Scholar 

  118. Chavakis, T., Wielockx, B. & Hajishengallis, G. Inflammatory modulation of hematopoiesis: linking trained immunity and clonal hematopoiesis with chronic disorders. Annu. Rev. Physiol. 84, 183–207 (2022).

    CAS  PubMed  Google Scholar 

  119. Chavakis, T., Mitroulis, I. & Hajishengallis, G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat. Immunol. 20, 802–811 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Penkov, S., Mitroulis, I., Hajishengallis, G. & Chavakis, T. Immunometabolic crosstalk: an ancestral principle of trained immunity. Trends Immunol. 40, 1–11 (2019).

    CAS  PubMed  Google Scholar 

  122. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mitroulis, I., Hajishengallis, G. & Chavakis, T. Trained immunity and cardiometabolic disease: the role of bone marrow. Arterioscler. Thromb. Vasc. Biol. 41, 48–54 (2021).

    CAS  PubMed  Google Scholar 

  124. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, X. et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185, 1709–1727 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Singer, K. et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol. Metab. 3, 664–675 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Griffin, C. et al. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice. J. Biol. Chem. 293, 8775–8786 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Nagareddy, P. R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 19, 821–835 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, A. et al. Bone marrow lympho-myeloid malfunction in obesity requires precursor cell-autonomous TLR4. Nat. Commun. 9, 708 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784 (2017).

    CAS  Google Scholar 

  133. Luo, Y. et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 22, 886–894 (2015).

    CAS  PubMed  Google Scholar 

  134. Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kourtzelis, I., Hajishengallis, G. & Chavakis, T. Phagocytosis of apoptotic cells in resolution of inflammation. Front. Immunol. 11, 553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. Mehrotra, P. & Ravichandran, K. S. Drugging the efferocytosis process: concepts and opportunities. Nat. Rev. Drug Discov. 21, 601–620 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Roszer, T. Adipose tissue immunometabolism and apoptotic cell clearance. Cells 10, 2288 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our research is supported by the European Research Council (DEMETINL to T.C.), the Deutsche Forschungsgemeinschaft (SFB-TRR 205, project A07 and AL1686/6-1 to V.I.A.; SFB-TRR 332, project B4 to T.C.), the Saxon State Ministry of Science, Culture and Tourism-SMWK (Sonderzuweisung zur Unterstützung profilbestimmender Struktureinheiten der TUD) and Boehringer Ingelheim Pharmaceuticals (A.W.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triantafyllos Chavakis.

Ethics declarations

Competing interests

A.W.F. receives grant support from Boehringer Ingelheim Pharmaceuticals. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Lydia Lynch and Alyssa Hasty for their contribution to the peer review of this work. Primary Handling Editor: N. Bernard, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavakis, T., Alexaki, V.I. & Ferrante, A.W. Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat Immunol 24, 757–766 (2023). https://doi.org/10.1038/s41590-023-01479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01479-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research